MITSUBISHI 32-BIT SINGLE-CHIP MICROCOMPUTER M32R family / M32R/E series

User's Manual

1998-03-03 Ver 1.00

KEEP SAFETY FIRST IN YOUR CIRCUIT DESIGNS!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable materials or (iii) prevention against any malfunction or mishap.

NOTES REGARDING THESE MATERIALS

These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

			110 W	to reat				40100 -		
1 B	3it Nu	ımbei	rs: Eacl wide addr D8-[h registe , so the resses a D15.	er is con bit num are D0-D	nected bers of 07, and	with an the reg those a	interna isters lo at odd	al bu ocate addr	s of 16-b ed at eve resses ar
2 S	State	of Re	∋gister a imme (unde	at Reset diately fined bit	t: Repres after res ts after r	sents th set with eset are	ne initial n hexado e indicat	state o ecimal ed each	f ea num n in c	ch registe bers column 3
3 S	State	of Bit	at Res	et: Repr	esents t	he initia	al state c	f each	bit ir	nmediate
			after	reset.						
				0 Ze	ro imme	diately	after re	eset		
				1 Un	e imme dofinod	diately	after re	set	ot	
				? UN	denned	Immed	lately a	iter res	et	
				re 0 R 1 R	ead disa ead alw ead alw	abled (r ays as avs as	ead val 0 1	ue inva	ilid)	
5 A	∖t wr i	ite:		: Wr	ite enat	bled				
5 A	∖t wri	ite:		:Wr :Wr - :Wri	ite enat rite enal (includ te disabl	bled ble con le som led (Wri	iditional e condi tten valu	ly tions a le invali	t wr d)	ite)
5 <i>F</i>	At wr	ite: ple of r	'epresenta	: Wr : Wr - : Wri ation>	ite enat rite enal (includ te disabl	bled ble con le som led (Wri	iditional e condi tten valu	ly tions a le invalion ted with thi y with halfw	t wr d) ck rect	ite) angles words
5 A	At wr	ite: ple of r	representa lot impleme 1 the shadeo	: Wr : Wr - : Wri ation> nted d portion.	ite enab rite enal (includ te disabl	oled ble con le som led (Wri Regis are a (not a	ditional e condi tten valu	y tions a ne invalion ted with thi y with halfw th bytes).	t wr d) ck rect	ite) angles words
(5) A	t wr حExam	ite: ple of r N ir 20	representa lot implement 1 the shaded 1	: Wr : Wr - : Wri ation> nted d portion. 2	ite enat rite enal (includ te disabl	bled ble con le som led (Wri Regis are a (not a 4	ditional e condi tten valu	ly tions a le invalion the with this y with halfw th bytes).	t wr d) ck rect ords or	ite) angles words
\$ A (1)	t wr «Exam	ite: ple of r Nir 20	representa lot impleme n the shaded 1 Abit	: Wr : Wr - : Wri ation> nted d portion. 2 Bbit	ite enat rite enat (includ te disabl 3 Cbit	oled ble con le som led (Wri are a (not a 4	ditional e condi tten valu	y tions a le invalion ted with thing with halfw th bytes).	t wr d) ck rect ords or	angles words
\$ A ®	At wr	ite: ple of r ^N ir 20	epresenta lot implement h the shaded 1 Abit	: Wr : Wr - : Wri ation> nted d portion. 2 Bbit	ite enab rite enal (includ te disabl	oled ble com le som led (Wri Regis are a (not a 4	ditional e condi tten valu sters represe ccessible onl accessible wi	ly tions a le invalie hted with thi y with halfw th bytes).	t wr d) ck rect ords or	ite) angles words
\$ A (1)	At wr	ite: ple of r Nir 20 Bit n	representa lot impleme n the shaded 1 Abit	: Wr : Wr - : Wri ation> nted d portion. 2 Bbit	ite enat rite enal (includ te disabl 3 Cbit	bled ble con le som led (Wri Regis are a (not a 4	ditional e condi tten valu	ly tions a le invali- nted with thi y with halfw th bytes).	t wr d) ck rect ords or at rese	ite) angles words t: H'04> W
A @	At wr	ite: ple of r Nir D0 Bit n Not a	representa lot impleme n the shaded 1 Abit ame assigned.	: Wr : Wr - : Wri ation> nted d portion. 2 Bbit	ite enab rite enal (includ te disabl 3 Cbit	oled ble con le som led (Wri are a (not a 4	ditional e condi tten valu sters represe ccessible onl accessible wi	ly tions a ne invalient ted with thi y with halfw th bytes).	t wr d) ck rect ords or at rese <u>R</u> _0	ite) angles words t: H'04> W
\$ A (1)	At wr	ite: ple of r Nir D0 Bit n Not a Abit	epresenta lot implemen n the shaded Abit ame assigned.	: Wr : Wr - : Wri ation> nted d portion. 2 Bbit	ite enab rite enal (includ te disabl 3 Cbit Fund 0:	bled ble com le som led (Wri Regis are a (not a 4	ditional e condi tten valu	ly tions a le invalie nted with thi y with halfw th bytes).	t wr d) ck rect ords or at rese R 0	ite) angles words t: H'04> W -
(1) (1)	At wr	ite: ple of r N ir D0 Bit n Not a Abit (epresenta lot implement n the shaded 1 Abit ame assigned.	: Wr : Wr - : Wri ation> nted d portion. 2 Bbit	ite enab rite enal (includ te disabl 3 Cbit Fund 0: 1:	bled ble com le som led (Wri are a (not a 4	ditional e condi tten valu sters represe ccessible on accessible wi	ly tions a le invalient ted with this y with halfw th bytes).	t wr d) ck rect ords or at rese R 0	ite) angles words t: H'04> W -
\$ A (1)	At wr	ite: ple of r Nir D0 Bit n Not a Abit (Bbit	representa lot impleme n the shaded 1 Abit ame assigned.	: Wr : Wr - : Wri ation> nted d portion. 2 Bbit	ite enab rite enal (includ te disabl 3 Cbit Fund 0: 1: 0:	oled ble con le som led (Wri are a (not a 4	ditional e condi tten valu sters represe ccessible onl accessible wi	ly tions a ne invalient ted with this y with halfwith bytes).	t wr d) ck rect ords or at rese R 0	ite) angles words t: H'04> W -
(1) (1)	At wr	ite: ple of r N ple of r N r D D D D D D D D D D D D D	representa lot impleme 1 Abit aame assigned.	: Wr : Wr - : Wri ation> nted d portion. 2 Bbit	ite enat rite enat (includ te disabl 3 Cbit Fund 0: 1: 0: 1:	bled ble com le som led (Wri Regis are a (not a 4	ditional e condi tten valu	ly tions a le invalie hted with thi y with halfw th bytes).	t wr d) ck rect ords or at rese R 0	ite) angles words t: H'04> W -
(1) (1)	At wr	ite: ple of r N ir D0 Bit n Not a Abit (Bbit (Cbit	representa Jot impleme n the shaded 1 Abit aame assigned.	: Wr : Wr - : Wri ation> nted d portion. 2 Bbit	ite enab rite enal (includ te disabl 3 Cbit Cbit Cbit Cbit	oled ble con le som led (Wri are a (not a 4 ction	ditional e condi tten valu sters represe ccessible onl accessible wi	ly tions a le invalie the with thi y with halfw th bytes).	t wr d) ck rect ords or at resee R 0	ite) angles words t: H'04> W -
\$ A (1)	At wr	ite: ple of r Nir D0 Bit n Not a Abit (Bbit (representa Vot implement n the shaded 1 Abit name assigned. 	: Wr : Wr - : Wri ation> nted d portion. 2 Bbit	ite enab rite enal (includ te disabl 3 Cbit Fund 0: 1: 0: 1: 1:	oled ble con le som led (Wri Regis are a (not a 4	ditional e condi tten valu	ly tions a le invalie ted with thi y with halfw th bytes).	t wr d) ck rect ords or at rese R 0	ite) angles words t: H'04> W -

2-1

Table of contents

CHAPTER 1 SUMMARY 1-1

1.1 Summary of M32150F4TFP	
1.1.1 M32R family CPU	1-2
1.1.2 Multiply-accumulate operational function	1-3
1.1.3 Internal flash memory and RAM	1-3
1.1.4 Clock frequency multiplier	1-3
1.1.5 Versatile peripheral functions	1-4
1.2 Block diagram	1-6
1.3 Pin functions	1-9
1.4 Pin assignment	

CHAPTER 2 CPU

2.1 CPU register	2-2
2.2 General-purpose registers	2-2
2.3 Control registers	2-3
2.3.1 Processor status word register: PSW (CR0)	2-4
2.3.2 Condition bit register: CBR (CR1)	2-5
2.3.3 Interrupt stack pointer: SPI (CR2)	2-5
User stack pointer:SPU (CR3)	2-5
2.3.4 Backup PC: BPC (CR6)	2-5
2.4 Accumulator	2-6
2.5 Program counter	2-6
2.6 Data format	2-7
2.6.1 Data type	2-7
2.6.2 Data format	2-8
2.7 Notes on use of accumulator	2-10

CHAPTER 3 ADDRESS SPACE

APTER 3 ADDRESS SPACE	3-1
3.1 Summary of address space	-2
3.2 Operation modes 3	-4
3.3 Internal ROM and expanded external area	-5
3.3.1 Internal ROM area 3	-5
3.3.2 Expanded external area 3	-5
3.4 Internal RAM and SFR area 3	-6
3.4.1 Internal RAM area 3	-6
3.4.2 SFR (Special Function Register) area	-6
3.5 EIT vector entry	15

Table of contents

HAPTER 4 EIT	4-1
4.1 Summary of EIT	
4.2 EIT events of M32150F4TFP	4-3
4.2.1 Exception	4-3
4.2.2 Interrupt	4-3
4.2.3 Trap	4-3
4.3 EIT processing procedure	4-4
4.4 EIT processing mechanism	4-5
4.5 EIT event acceptance	4-6
4.6 Save and return of PC and PSW	4-7
4.7 EIT vector entry	4-9
4.8 Exception processing	4-10
4.8.1 Reserved instruction exception (RIE)	
4.8.2 Address Exception (AE)	
4.9 Interrupt processing	4-14
4.9.1 Reset interrupt (RI)	
4.9.2 System break interrupt (SBI)	
4.9.3 External interrupt (EI)	
4.10 Trap processing	4-19
4.10.1 Trap (TRAP)	
4.11 EIT priority	4-21
4.12 EIT processing example	4-22

CHAPTER 5 INTERNAL MEMORY

5.1 Summary of internal memory	5-2
5.2 Internal RAM	5-2
5.3 Internal flash memory	5-2
5.4 Programming of internal flash memory	5-3
5.4.1 Outline of programming flash memory	5-3
5.4.2 Operation modes at programming flash memory	5-6
5.4.3 RSIF (RAM Serial InterFace)	5-7
5.4.4 Procedure of programming internal flash memory	5-9
5.4.5 Time required to program flash memory	5-14
5.4.6 External protection circuit of VPP/MOD1 pins	5-15
5.5 Registers related to internal flash memory	5-16
5.5.1 Flash mode register (FMOD)	5-17
5.5.2 Flash control register (FCNT)	5-18
5.5.3 Block erase control register (FBLK)	5-19
5.6 Virtual flash emulation	5-20
5.6.1 Area available for virtual flash emulation	5-20
5.6.2 Entering virtual flash emulation mode	5-20

CHAPTER 6 RESET

5-1

6.1 Summary of reset	
6.2 Reset operation	
6.2.1 Reset at power on	
6.2.2 Reset during operation	
6.2.3 Reset vector at rewriting flash memory	
6.3 Internal states immediately after leaving reset	6-2

Table of contents

7-1

8-1

CHAPTER 7 EXTERNAL BUS INTERFACE

7.1 Signals related to external bus interface	7-2
7.2 Read/write operations	7-4
7.3 Bus arbitration	7-7

CHAPTER 8 I/O PORT AND PIN FUNCTION

8.1 Summary of I/O ports	. 8-2
8.2 Selection of pin function	. 8-3
8.3 Registers related to I/O ports	8-5
8.3.1 Port data register	. 8-7
8.3.2 Port direction register	. 8-8
8.3.3 Port operation mode register	. 8-9
8.4 Port peripheral circuit	B-19

CHAPTER 9 DMAC

9.1 Summary of DMAC	
9.2.1 DMAn channel control registers $(n - 0 \text{ to } 4)$	9- 6
9.2.2 DMAn software request generate register $(n = 0 \text{ to } 4)$	9-12
9.2.3 DMAn source address register ($n = 0$ to 4)	9-13
9.2.4 DMAn destination address register ($n = 0$ to 4)	
9.2.5 DMAn transfer count register ($n = 0$ to 4)	9-15
9.2.6 DMA interrupt request status register (DMITST)	9-16
9.2.7 DMA interrupt mask register (DMITMK)	9-17
9.3 Functional description of DMAC	9-18
9.3.1 DMA request sources	9-18
9.3.2 Sequences of DMA transfer processing	9-20
9.3.3 Start of DMA	9-21
9.3.4 Channel priority levels	9-21
9.3.5 Holding and relinquishing of internal bus	9-21
9.3.6 Unit of transfer	9-21
9.3.7 Number of transfers	9-21
9.3.8 Address space	9-22
9.3.9 Transfer operation	9-22
9.3.10 DMA completion and interrupts	9-25
9.3.11 States of registers after DMA transfer complete	9-25
9.4 Notes on use of DMAC	9-26

CHAPTER 10 MULTI-JUNCTION TIMERS

10.1 Summary of multi-junction timers	. 10-2
10.2 Units common to timers	. 10-6
10.2.1 Register map related to units common to the timers	. 10-6
10.2.2 Prescalers	. 10-8
10.2.3 Clock bus/input and output event bus control unit	. 10-9
10.2.4 Input processing control unit	10-14
10.2.5 Output flip-flop control unit	10-21
10.2.6 Interrupt control unit	10-28

9-1

10-1

iii

10.3 TOP (16-bit timers related to output)	10-39
10.3.1 Summary of TOPs	10-39
10.3.2 Outline of TOP modes	10-41
10.3.3 Register map related to TOPs	10-42
10.3.4 TOP control registers	
10.3.5 TOP counters (TOP0CT to TOP10CT)	
10.3.6 TOP reload registers (TOP0RL to TOP10RL)	10-53
10.3.7 TOP adjust registers (TOP0CC to TOP10CC)	
10.3.8 TOP0 to TOP10 external enable permit register (TOPEEN)	
10.3.9 TOP0 to TOP10 enable protect register (TOPPRO)	
10.3.10 TOP0 to TOP10 count enable register (TOPCEN)	
10.3.11 Operation of TOP single-shot output mode (with adjust funct	tion) 10-58
10.3.12 Operation of TOP delayed single-shot output mode	,
(with adjust function)	
10.3.13 Operation of TOP continuous output mode	
(without adjust function)	
10.4 TIO (16-bit timers related to input/output)	
10.4.1 Summary of TIOs	
10.4.2 Outline of TIO modes	
10.4.3 Register map related to TIO	
10.4.4 TIO control registers	
10.4.5 TIO counters (TIO0CT to TIO9CT)	10-90
10.4.6 TIO reload 0/measure register (TIO0RI 0 to TIO9RI 0)	10-91
10.4.7 TIO reload 1 registers (TIO0RI 1 to TIO9RI 1)	10-92
10.4.8 TIO0 to TIO9 enable protect register (TIOPRO)	10-93
10.4.9 TIO0 to TIO9 count enable register (TIOCEN)	10-94
10.4.10 Operation of TIO measure (free-run/clear) input mode	10-95
10.4.11 Operation of TIO noise processing input mode	10-98
10.4.12 Operation of TIO PWM output mode	10-99
10.4.13 Operation of TIO single-shot output mode (without adjust fur	nction) 10-103
10.4.14 Operation of TIO single-shot output mode (without adjust fur	nction) 10-105
10.4.15 Operation of TIO continuous output mode (without adjust fur	nction) 10-107
10.5 TMS (16-bit timers related to input)	
10.5.1 Summary of TMSs	
10.5.2. Summary of TMS Operation	
10.5.3 Register map related to TMS	
10.5.4 TMS control registers	
10.5.5 TMS counters (TMS0CT, TMS1CT)	
10.5.6 TMS measure register	
(TMS0MR3 to TMS0MR0_TMS1MR3 to TMS1MR0)	10-115
10.5.7 Operation of TMS measure inputs	10-116
10.6 TML(32-bit timers related to input)	
10.6.1 Summary of TMIs	10-118
10.6.2 Summary of TML operation	10-119
10.6.3 Register map related to TML registers	10-120
10.6.4 TML control register (TMLCR)	10-121
10.6.5 TML counter (TMLCTH_TMLCTL)	10-127
10.6.6 TML measure registers	
(TMLMR3H to TMLMR0H TMLMR3L to TMLMR0L)	10-123
10.6.7 Operation of TML measure inputs	10-120

CHAPTER 11 A-D CONVERTER

12-1

11.1 Summary of A-D converter	. 11-2
11.1.1 Conversion modes	. 11-5
11.1.2 Operation modes	. 11-6
11.1.3 Special operation modes	11-10
11.1.4 A-D conversion interrupt request and DMA transfer request	11-13
11.2 Registers related to A-D converter	11-14
11.2.1 Single mode register 0 (ADSIM0)	11-15
11.2.2 Single mode register 1 (ADSIM1)	11-17
11.2.3 Scan mode register 0 (ADSCM0)	11-19
11.2.4 Scan mode register 1 (ADSCM1)	11-21
11.2.5 A-D successive approximation register (ADSAR)	11-23
11.2.6 A-D comparate data register (DCMP)	11-24
11.2.7 A-D data register 0 to A-D data register 15 (ADDT0 to ADDT15)	11-25
11.3 Functional description of A-D converter	11-26
11.3.1 Analog input voltage	11-26
11.3.2 Successive-approximation A-D conversion	11-27
11.3.3 Comparator operation	11-29
11.3.4 Calculation of A-D conversion time	11-30
11.3.5 Accuracy of A-D conversion	11-32
11.4 Notes on use of A-D converter	11-34

CHAPTER 12 SERIAL I/O

12.1 Summary of serial I/O	12-2
12.2 Registers related to serial 1/0	12-4
12.2.1 SIOn control register 0 (n = 0, 1)	12-8
12.2.3 SIOn control register 1 (n = 0, 1)	12-10
12.2.4 SIOn baud rate register (n = 0, 1)	12-11
12.2.5 SIOn interrupt mask register (n = 0, 1)	12-12
12.2.6 SIOn status register (n = 0, 1)	12-14
12.2.7 SIOn transmit buffer register (n = 0, 1)	12-17
12.2.8 SIOn receive buffer register $(n = 0, 1)$	12-18
12.3 Transmission in CSIO mode	12-19
12.3.1 Setting of CSIO baud rate	12-19
12.3.2 Initialization at CSIO transmission	12-20
12.3.3 Beginning of CSIO transmission	12-22
12.3.4 CSIO continuous transmission	12-22
12.3.5 CSIO transmit complete processing	12-22
12.3.6 CSIO transmit operation	12-24
12.4 Reception in CSIO mode	12-26
12.4.1 Initialization at CSIO reception	12-26
12.4.2 Beginning of CSIO reception	12-28
12.4.3 CSIO receive complete processing	12-28
12.4.4 Flags indicating states of CSIO receive operation	12-30
12.4.5 CSIO receive operation	12-31
12.5 Notes on use of CSIO mode	12-33
12.6 Transmission in UART mode	12-35
12.6.1 Setting of URAT baud rate	12-35
12.6.2 UART transmit/receive data formats	12-36

12-38
12-40
12-42
12-51
-

CHAPTER 13 INTERRUPT CONTROLLER

13.1 Summary of interrupt controller (ICU)	
13.2 Interrupt sources of internal peripheral I/Os	
13.3 Registers related to ICU	13-5
13.3.1 Interrupt vector register (IVECT)	13-6
13.3.2 Interrupt mask register (IMASK)	13-7
13.3.3 SBI control register (SBICR)	13-8
13.3.4 Interrupt control register	13-9
13.4 ICU vector table	
13.5 Interrupt operation	
13.5.1 Acceptance of interrupts from internal peripheral I/Os	13-15
13.5.2 Interrupt handler processing of internal peripheral I/Os	13-17
13.6 System break interrupt (SBI)	13-19
13.6.1 Acceptance of SBI	
13.6.2 Handler processing of SBI	13-19

CHAPTER 14 WAIT CONTROLLER

14.1 Summary of wait controller	14-2
14.2 Registers related to wait controller	14-4
14.2.1 Wait cycle control register (WTCCR)	14-5
14.3 Wait controller operation	14-6

CHAPTER 15 REAL-TIME DEBUGGER

1	5_	.1
	J-	

14-1

13-1

15.1 Summary of real-time debugger (RTD)	
15.3 RTD operation	
15.3.1 Summary of RTD operation	15-4
15.3.2 Operation of real-time output of RAM contents (RDR)	15-5
15.3.3 Operation of forced rewrite of RAM contents (WRR)	15-7
15.3.4 Continuous monitor operation (VER)	15-9
15.3.5 Operation of return from runaway (RCV)	15-10
15.3.6 Reset of RTD	15-11
15.4 Connection to host computer	15-12

Table of contents

CHAPTER 16 RAM BACKUP MODE

16.1 Summary	16-2
16.2 An example of RAM backup at the time of power shutoff	16-3
16.2.1 The normal state of operation	16-4
16.2.2 The state at the time of RAM backup	16-5
16.3 An example of RAM backup for low power consumption	16-6
16.3.1 The normal state of operation	16-7
16.3.2 The state at the time of RAM backup mode	16-8
16.3.3 Notes turning the power on	16-9
16.4 Canceling RAM backup mode (wakeup)1	6-10

CHAPTER 17 OSCILLATION CIRCUIT 17-1

17.1 Oscillation circuit	17-2
17.1.1 An example of oscillation circuit	17-2
17.1.2 Output function of the system clock	17-3
17.1.3 Oscillation stabilization time when the power is turned of	n 17-4

CHAPTER 18 ELECTRICAL CHARACTERISTICS

18.1 Absolute maximum ratings	
18.2 Recommended operating conditions	
18.3 DC characteristics	
18.3.1 Electrical characteristics	
18.3.2 Electrical characteristics related to flash	
18.4 A-D conversion characteristics	
18.5 AC characteristics	
18.5.1 Timing requirements	
18.5.2 Switching characteristics	
18.5.3 AC characteristics	

CHAPTER 19 STANDARD CHARACTRISTICS	17-1
19.1 A-D conversion charactristics	17-2
APPENDIX 1 MECHANICAL SPECIFICATION	A1-1
A1.1 Package outline (Real chip)	A1-2
APPENDIX 2 INSTRUCTION PROCESSING TIME	A2-1
A2.1 Instruction processing time	A2-2

M32150F4TFP User's Manual

16-1

18-1

vii

- 1.1 Summary of M32150F4TFP
- 1.2 Block diagram
- 1.3 Pin functions
- 1.4 Pin assignment

1.1 Summary of M32150F4TFP

1.1 Summary of M32150F4TFP

1.1.1 M32R family CPU

(1) RISC architecture

The M32150F4TFP is a single-chip 32-bit RISC microcomputer provided with the M32R family CPU (hereafter called the M32R CPU), a 128K-byte flash memory, a 6K-byte RAM, and integrated peripherals. The M32R CPU is designed using RISC architecture with 83 instructions. The CPU accesses memory with load and store instructions and performs various operations with register-to-register operation instructions. It has sixteen 32-bit general-purpose registers.

The M32R CPU supports such compound instructions as load & address update, store & address update, etc. in addition to ordinary load and store instructions. Compound instructions are effective in high-speed data transfer.

(2) Five-stage pipeline processing

The M32R CPU executes instructions through the pipeline processing of 5 stages, i.e. the instruction fetch, decode, execution, memory access, and write back stages. The CPU can execute the abovementioned compound instructions in one cycle as well as load, store, and register-to-register operation instructions.

Instructions are sent to the execution stage in order of fetch. However, if the execution of the load or store instruction that has been sent to this stage is retarded by the insertion of wait cycles for memory access, the succeeding register-to-register operation instruction may take precedence to be executed. This "out-of-order-completion" incorporated into the M32R CPU can make efficient use of clock cycles for instruction execution.

(3) Compact instruction codes

The M32R CPU has two types of instructions in length, 16-bit and 32-bit wide. 16-bit instructions can be effectively used to reduce the code size of program.

On the other hand, 32-bit instructions contain the instructions that can directly branch to an address within the range of -32M bytes from that of each instruction under execution. The use of these instructions allow easier programming than in the architecture with segmented address space.

1.1.2 Multiply-accumulate operational function

(1) High-speed multiplier

The M32R CPU is equipped with a 32-bit x 16-bit on-chip high-speed multiplier, which can executes a multiply instruction of 32-bit by 32-bit integer multiplication in 3 cycles (40 ns per one cycle at 25 MHz internal operation).

(2) Multiply-accumulate operational function comparable to DSP

The M32R CPU supports the following four multiply functions of multiply-accumulate operation instructions by using the 56-bit accumulator.

Either of these functions can be accomplished in one cycle.

- the high-order 16 bits of a register x the high-order 16 bits of another register
- the low order 16 bits of a register x the low-order 16 bits of another register
- the whole 32 bits of a register x the high-order 16 bits of another register
- the whole 32 bits of a register x the low-order 16 bits of another register

The M32R CPU provides such instruction as rounds the value stored in the accumulator to 16 or 32 bits or as stores the accumulator value in a register by shifting it for address alignment. Because the M32R CPU can execute these instructions in one cycle, it accomplishes the data processing capability compared to DSP by making use of these instructions together with high-speed data transfer instructions, i.e. load & address update and store & address update.

1.1.3 Internal flash memory and RAM

The M32150F4TFP provides a 128K-byte flash memory and a 6K-byte RAM accessible with no wait, which are useful for configuring embedded high-speed systems.

The internal flash memory can be programmed in the same condition as it will be connected to the final printed circuit board (on-board programming). Thus, by using the flash memory, the chips used in prototype design will be brought into production as they are, as well as the PC board will be without any modification.

The internal flash memory is provided with virtual flash emulation function, so the internal RAM can be mapped virtually into a portion of the flash memory. This function together with the on-chip real-time debugger (RTD) facilitates data tuning on the ROM table.

By using the RTD, the internal RAM can externally be read or rewritten independently of the M32R CPU. The RAM communicates with the external circuit through the synchronous serial I/O dedicated to the RTD.

1.1.4 Clock frequency multiplier

The M32150F4TFP internally doubles the input clock frequency to make the internal clock. A 12.5 MHz input clock frequency, for example, generates an internal clock of 25 MHz.

1.1 Summary of M32150F4TFP

1.1.5 Versatile peripheral functions

(1) Multi-junction timers (MJTs)

The multi-junction timers consist of 33 channels in total, including 11 channels of the output-related timers, 10 channels of the input/output-related timers, 8 channels of the 16-bit input-related timers, and 4 channels of the 32-bit input-related timers. Many of these timers operate in two or more modes, which are selectable for various applications.

The multi-junction timers are provided with a clock bus, an input event bus, and an output event bus, with which they can be internally connected to each other as well as used as individual timers. This function provides flexible timer configuration and capability for various applications.

The output-related timers have adjust function, which increments or decrements count values freely during count operation, resulting in real-time control.

(2) Direct memory access controller (DMAC)

The on-chip 5-channel DMAC supports direct data transfer between internal peripheral I/Os, between internal peripheral I/O and internal RAM, and between internal RAMs. DMA transfer requests can be triggered with user-programmable software or signals generated by internal peripheral I/Os (A-D converter, MJTs, and serial I/O).

Because DMA channels can be connected in cascade, the completion of the DMA transfer of a channel starts the DMA transfer of another channel. This function facilitates high-functional DMA transfer operation without any CPU service overhead.

(3) A-D converter

The 16-channel A-D converter has a resolution of 10 bits. The converter performs A-D conversion of 4 channels, 8 channels or 16 channels as a group as well as of each individual channel.

The A-D converter supports the comparate mode in which the converter compares a result of A-D conversion with the specified value and determine which is larger.

When A-D conversion is completed, an A-D conversion complete interrupt or a DMA transfer request can be generated.

(4) High-speed serial I/O

The M32150F4TFP provides 2 channels of serial I/O, used as synchronous I/O or UART.

Data can be transferred at a maximum transfer rate of 2 Mbps in synchronous I/O (at 25 MHz internal operation).

When a data reception completed or a transmit buffer register emptied, the SIO channels can generate DMA transfer requests.

(5) Real-time debugger (RTD)

The on-chip real-time debugger (RTD) provides the facility in accessing the internal RAM directly from the external circuit. The RAM communicates with the external circuit through the synchronous serial I/O dedicated to the RTD.

By using the RTD, the internal RAM can externally be read or rewritten independently of the M32R CPU.

(6) Interrupt controller

The interrupt controller defines eight interrupt priority levels including interrupt disable, with which it manages the interrupt requests from internal peripheral I/Os. It also accepts system break interrupts generated by any fault in power supply or by the external watchdog timer.

(7) Three operating modes

The M32150F4TFP has three operation modes, the single chip, the expanded external, and the processor mode. Each mode, having its own address space and external pin functions, is selected by the MOD0 and MOD1 mode definition pins.

(8) Wait controller

The wait controller supports accessing the expanded external area. The maximum of 1M bytes is assigned to this area in every mode except the single chip mode.

1.2 Block diagram

1.2 Block diagram

The block diagram of the M32150F4TFP is shown in Figure 1.2.1, and the features of its blocks are described in Tables 1.2.1 to 1.2.3.

Fig. 1.2.1 Block diagram of M32150F4TFP

1.2 Block diagram

Table 1.2.1 M32R family CPU

Functional block	Features				
M32R family CPU	Bus specification				
	Basic bus cycle: 40 ns (at 25 MHz internal operation)				
	Logical address space: 4G bytes linear				
	Expanded external area: 1M bytes maximum				
	External data bus: 16 bits wide				
	 Implementation: 5-stage pipeline architecture 				
	CPU core: internal 32 bits				
	Registers				
	General-purpose registers: 32 bits x 16				
	Control registers: 32 bits x 5				
	Instruction set				
	16-bit/32-bit instructions				
	83 instructions with 9 addressing modes				
	 On-chip multiply-accumulate operational unit 				

Table 1.2.2 Internal memory

Functional block	Features
RAM	Size: 6K bytes
	 No wait access (at 25 MHz internal operation)
	• RAM can externally be read or rewritten independently of M32R CPU using RTD
	(real-time debugger)
Flash memory	Size: 128K bytes
	 No wait access (at 25 MHz internal operation)
	 Programming function available using dedicated serial I/O (RSIF)

1.2 Block diagram

Table 1.2.3	Internal	peripheral	l/Os
-------------	----------	------------	------

Functional block	Features
DMAC	• 5 channels
	• Supports DMA transfer between internal peripheral I/Os, between internal RAM
	and internal peripheral I/Os, and between internal RAMs
	 High-functional DMA transfer by combining request source from internal peripheral I/Os
	Cascade connection between DMAC channels available (completion of transfer of
	a channel starts transfer of another channel).
Multi-junction timers	• 33 channels of multifunctional timers
	• 11 channels of output-related timers, 10 channels of input/output-related timers,
	8 channels of 16-bit input-related timers, and 4 channels of 32-bit input-related
	timers
	 Flexible timer configuration available by interconnecting channels
A-D converter	16 channels of 10-bit resolution
	Comparator mode available
	Interrupt or DMA transfer can be generated at A-D conversion completion
Serial I/O	• 2 channels
	 Synchronous serial I/O or UART selectable
	 High-speed data transfer: 2 Mbps at synchronous serial I/O and 195 Kbps at
	UART
Real-time debugger	• CPU-independent rewriting and monitoring of internal RAM by externally input
	commands
	Equipped with dedicated synchronous serial port
Interrupt controller	 Controls interrupt requests from internal peripheral I/Os
	8 priority levels including interrupt disable
Wait controller	 Controls wait cycles for accessing expanded external area
	• Software-programmable 1- to 4-wait insertion + arbitrary wait insertion by external
	WAIT signal input
Clock PLL	Multiply-by-two clock generator
	(an input clock of 12.5 MHz at 25 MHz internal operation)

1.3 Pin functions

1.3 Pin functions

The pin functional diagram is shown in Figure 1.3.1 and the pin descriptions are explained in Table 1.3.1.

Туре	Symbols	Name	Input/	Function		
			Output			
Power	VCC	Power source	-	All VCC pins sho	ould be co	onnected on a VCC plane
source	VDD	RAM power source	-	Power source for	or interna	I RAM backup
	VPP	FLASH power source	-	Power source for	on-chip fl	ash memory programming/
				erasure system		
	VSS	System ground	-	All VSS pins sho	uld be coi	nnected on a ground plane
		Clock	loout	(GND)		ak of one half the operation
CIOCK	XIN, XOUT	CIUCK	Output			
	2001		Output	(XIN input 40.		Clock frequency multiplier
		System clock	Output	(XIN input = 12.5 MHz at 25 MHz internal operation		
	DOEN		Output	(BCLK output = 2)	5 MHz at	25 MHz internal operation):
				used to design s	svnchron	ous external circuits
	OSC-VCC,	Power source	-	Power source to	PLL circ	cuit: OSC-VCC connected
	OSC-VSS	Ground	-	to power source	and OS	C-VSS to ground
	VCNT	PLL control	Input	Control for PLL circuit: a resistor and a capacitor		
				are connected.		
				For external circ	cuit, refer	to Section 17.1.1 "An
				example of oscil	llation cir	cuit".
Reset	RESET	Reset	Input	Internal reset		
Mode	MOD0,	Mode	Input	Define operation	n mode	
	MOD1			MOD0	MOD1	Mode
				0	0	Single chip mode
				0	1	Expanded external mode
				1	0	Processor mode
				1	1	(Reserved)
Address	s A13 to A30	Address bus	Output	Used to connect	t two off-	chip memory spaces of
bus				maximum 4M bi	ts(512K k	oytes) each if necessary
				(A31 notoutputte	ed). Byte	position in 16-bit data bus
				to whichvalid dat	ta is writt	en is indicated by a BHW
				or BLW output d	uring writ	e cycle. 16-bit data bus is
				always read dur	ing read	cycle; however, only data
				at valid byte posi	tion is tra	nsferred to M32150F4TFP
				internal circuitry	•	
Data bus	DB0 to DB15	Data bus	I/O	16-bit data bus	connecte	d to external devices

1.3 Pin functions

1.3 Pin functions

Туре	Symbols	Name	Input/	Function
			Output	
Bus	CS0,	Chip select	Output	Chip select signal for accessing external devices;
control	CS1			for the expanded external area accessible by each
				chip select signal, refer to Chapter 3 "Address
_				space"
-	RD	Read	Output	Outputted at a read of external device
	BHW	Byte high write	Output	Indicate byte positions to which valid data is
-				transferred at a write of external device; $\overline{\text{BHW}}$
	BLW	Byte low write		corresponds to the high-order address (DB0 to DB7
				valid), and BLW to the low-order address (DB8 to
				DB15 valid)
	WAIT	Wait	Input	If tied "L", wait cycles are extended when
_				M32150F4TFP accesses external device
	HREQ	Hold request	Input	Used for external devices to request bus hold of
				external bus; if tied "L", M32150F4TFP goes to
				the hold state
	HACK	Hold acknowledges	Output	M32150F4TFP goes to the hold state, relinquishing
				the bus of the external bus
Multi-	TIN0 to	Timer input	Input	Input pins to multi-junction timers
junction	TIN23			
timers				
	TO0 to	Timer output	Output	Output pins from multi-junction timers
-	TO20			
	TCLK0 to	Timer clock	Input	Clock input pins to multi-junction timers
	TCLK3			
A-D	AVCC,	Analog power source	-	Power source to A-D converter; AVCC connected
converter				to VCC
-	AVSS	Analog ground	-	AVSS connected to ground
	AN0 to	Analog input	Input	16-channel analog inputs of A-D converter
-	AN15			
-	AVREF	Reference voltage input	Input	Reference voltage input of A-D converter
-	ADTRG	Converted trigger	Input	Hardware trigger input for starting A-D conversion
	ADSEL0,	Analog selector	Output	Analog switch pins connected to external devices,
	ADSEL1			used to extend the number of input pins of A-D
				converter
Interrupt	SBI	System break interrupt	Input	System break interrupt (SBI) input of interrupt
controller				controller

1.3 Pin functions

Туре	Symbols	Name	Input/ output	Function
Serial	TXD0	Transmit data	Output	Output of serial I/O channel 0
I/O	RXD0	Receive data	Input	Input of serial I/O channel 0
	SCLKI 0/	UART transmit/	I/O	Channel 0 in UART mode:
	SCLKO 0	receive clock input		Transmit/receive clock input when external clock
		or		selected
		CSIO transmit/		Channel 0 in CSIO mode:
		receive clock		Transmit/receive clock input when external
		input/output		clock selected
				Transmit/receive clock output when internal
				clock selected
	TXD1	Transmit data	Output	Transmit data output of serial I/O channel 1
	RXD1	Receive data	Input	Receive data input of serial I/O channel 1
	SCLKI 1/	UART transmit/	I/O	Channel 1 in UART mode:
	SCLKO 1	receive clock input		Transmit/receive clock input when external clock
		or		selected
		CSIO transmit/		Channel 1 in CSIO mode:
		receive clock		Transmit/receive clock input when external
		input/output		clock selected
				Transmit/receive clock output when internal
				clock selected
Real-time	RTDTXD	Transmit data	Output	Serial data output of real-time debugger
Debugger	RTDRXD	Receive data	Input	Serial data input of real-time debugger
	RTDCLK	Clock input	Input	Serial data transmit/receive clock input of real-time
				debugger
	RTDACK	Aknowledge	Output	Outputs "L" pulse synchronized to the beginning
				clock of serial output data word of real-time debugger;
				"L" width of the pulse indicatesthe kind of command
				or data that real-time debugger received
Serial I/O	RRX	RSIF receive	Input	Transmit/receive pins of serial I/O (RSIF: RAM Serial
dedicated	RTX	RSIF transmit	Output	InterFace) dedicated to transfer program used for
to flash				writing to flash memory; refer to Section 5.5
memorv				"Programming of internal flash memory" for detail

1.3 Pin functions

Table			4)	
Туре	Symbols	Name	Input/	Function
			output	
I/O	P00 to P07	I/O port0	I/O	Programmable I/O port pins
ports	P10 to P17	I/O port1	I/O	Programmable I/O port pins
(see	P20 to P27	I/O port2	I/O	Programmable I/O port pins
note)	P30 to P37	I/O port3	I/O	Programmable I/O port pins
	P41 to P47	I/O port4	I/O	Programmable I/O port pins
	P61 to P67	I/O port6	I/O	Programmable I/O port pins except P64
				(P64 is SBI input-only port)
	P70 to P77	I/O port7	I/O	Programmable I/O port pins
	P82 to P87	I/O port8	I/O	Programmable I/O port pins
	P93 to P97	I/O port9	I/O	Programmable I/O port pins
	P100 to P107	I/O port10	I/O	Programmable I/O port pins
	P110 to P117	I/O port11	I/O	Programmable I/O port pins
	P124 to P127	I/O port12	I/O	Programmable I/O port pins
	P130 to P137	I/O port13	I/O	Programmable I/O port pins
	P140 to P147	I/O port14	I/O	Programmable I/O port pins
	P150 to P157	I/O port15	I/O	Programmable I/O port pins

Table 1.3.1 Pin function descriptions (4/4)

Note: I/O port 5 is MITSUBISHI reserved.

1.4 Pin assignment

1.4 Pin assignment

The pin assingnment of the M32150F4TFP is shown in Figure 1.4.1, and the M32150F4TFP pin names with package location is shown in Table 1.4.1.

Fig. 1.4.1 Pin assignment

1.4 Pin assignment

Tabl	e 1.4.1 Pin assign	ment					
No.	Pin name	No.	Pin name	No.	Pin name	No.	Pin name
1	VCC	41	VCC	81	VCC	121	VCC
2	P61	42	P03/DB3	82	P24/A27	122	P114/TO4
3	P62	43	P04/DB4	83	P25/A28	123	P115/TO5
4	P63	44	P05/DB5	84	P26/A29	124	P116/TO6
5	P64/SBI	45	P06/DB6	85	P27/A30	125	P117/T07
6	P65/ADSEL0	46	P07/DB7	86	P150/TIN0	126	P100/TO8
7	P66/ADSEL1	47	P10/DB8	87	P151/TIN1	127	P101/TO9
8	P67/ADTRG	48	P11/DB9	88	P152/TIN2	128	P102/TO10
9	P70/BCLK	49	VSS	89	P153/TIN3	129	P103/TO11
10	P71/WAIT	50	VCC	90	P154/TIN4	130	P104/TO12
11	P72/HREQ	51	P12/DB10	91	P155/TIN5	131	P105/TO13
12	P73/HACK	52	P13/DB11	92	P156/TIN6	132	P106/TO14
13	P74/RTDTXD	53	P14/DB12	93	P157/TIN7	133	P107/TO15
14	P75/RTDRXD	54	P15/DB13	94	VSS	134	P93/TO16
15	P76/RTDACK	55	P16/DB14	95	VCC	135	P94/TO17
16	P77/RTDCLK	56	P17/DB15	96	P140/TIN8	136	P95/TO18
17	VSS	57	P41/BLW	97	P141/TIN9	137	P96/TO19
18	VCC	58	P42/BHW	98	P142/TIN10	138	P97/TO20
19	VDD	59	VSS	99	P143/TIN11	139	VSS
20	P82/TXD0/RTX	60	VCC	100	P144/TIN12	140	VCC
21	P83/RXD0/RRX	61	P43/RD	101	P145/TIN13	141	AVREF
22	P84/SCLKI0/SCLKO0	62	P44/CS0	102	P146/TIN14	142	AVCC
23	P85/TXD1	63	P45/CS1	103	P147/TIN15	143	AN0
24	P86/RXD1	64	P46/A13	104	P130/TIN16	144	AN1
25	P87/SCLKI1/SCLKO1	65	P47/A14	105	P131/TIN17	145	AN2
26	VSS	66	P30/A15	106	P132/TIN18	146	AN3
27	OSC-VSS	67	P31/A16	107	P133/TIN19	147	AN4
28	XIN	68	P32/A17	108	P134/TIN20	148	AN5
29	XOUT	69	VSS	109	P135/TIN21	149	AN6
30	OSC-VCC	70	VCC	110	P136/TIN22	150	AN7
31	VCNT	71	P33/A18	111	P137/TIN23	151	AN8
32	VCC	72	P34/A19	112	P124/TCLK0	152	AN9
33	RESET	73	P35/A20	113	P125/TCLK1	153	AN10
34	MOD0	74	P36/A21	114	P126/TCLK2	154	AN11
35	MOD1	75	P37/A22	115	P127/TCLK3	155	AN12
36	VPP	76	P20/A23	116	P110/TO0	156	AN13
37	P00/DB0	77	P21/A24	117	P111/TO1	157	AN14
38	P01/DB1	78	P22/A25	118	P112/TO2	158	AN15
39	P02/DB2	79	P23/A26	119	P113/TO3	159	AVSS
40	VSS	80	VSS	120	VSS	160	VSS

1.4 Pin assignment

MEMORANDOM

CPU

- 2.1 CPU register
- 2.2 General-purpose registers
- 2.3 Control registers
- 2.4 Accumulator
- 2.5 Program counter
- 2.6 Data format
- 2.7 Notes on use of accumulator

2.1 CPU register

2.1 CPU register

The M32R CPU has 16 general-purpose registers, 5 control registers, an accumulator and a program counter. The accumulator is of 64-bit width. The registers and program counter are of 32-bit width.

2.2 General-purpose registers

The 16 general-purpose registers (R0 to R15) are of 32-bit width and are used to retain data and base addresses. R14 is used as the link register and R15 as the stack pointer (SPI or SPU). The link register is used to store the return address when executing a subroutine call instruction. The interrupt stack pointer (SPI) and the user stack pointer (SPU) are alternately represented by R15 depending on the value of the stack mode bit (SM) in the processor status word register (PSW).

2.3 Control registers

There are 5 control registers which are the processor status word register (PSW), the condition bit register (CBR), the interrupt stack pointer (SPI), the user stack pointer (SPU) and the backup PC (BPC). The **MVTC** and **MVFC** instructions are used for writing and reading these control registers.

2.3 Control registers

2.3.1 Processor status word register: PSW (CR0)

The processor status word register (PSW) shows the M32R CPU status. It consists of the current PSW field, and the BPSW field where a copy of the PSW field is saved when EIT (For details, refer to Chapter 4 "EIT".) occurs.

The PSW field is made up of the stack mode bit (SM), the interrupt enable bit (IE) and the condition bit (C).

The BPSW field is made up of the backup stack mode bit (BSM), the backup interrupt enable bit (BIE) and the backup condition bit (BC).

D	Bit name	Function	init.	R	W
16	BSM (Backup SM)	Saves value of SM bit when EIT occurs	undefined		
17	BIE (Backup IE)	Saves value of IE bit when EIT occurs	undefined		
23	BC (Backup C)	Saves value of C bit when EIT occurs	undefined		
24	SM (Stack mode)	0: Uses R15 as the interrupt stack pointer 1: Uses R15 as the user stack pointer	terrupt stack pointer 0 ser stack pointer		
25	IE (Interrupt enable)	0: Does not accept interrupt 0 1: Accepts interrupt			
31	C (Condition bit)	Indicates carry, borrow and overflow resulting from operations (instruction dependent)	0		

2.3.2 Condition bit register: CBR (CR1)

The condition bit register (CBR) is a separate register which contains the condition bit (C) in the PSW. The value of the condition bit (C) in the PSW is reflected in this register. This register is read-only. An attempt to write to the CBR with the **MVTC** instruction is ignored.

2.3.3 Interrupt stack pointer: SPI (CR2) User stack pointer: SPU (CR3)

The interrupt stack pointer (SPI) and the user stack pointer (SPU) retain the current stack address. The SPI and SPU can be accessed as the general-purpose register R15. R15 switches between representing the SPI and SPU depending on the value of the stack mode bit (SM) in the PSW.

2.3.4 Backup PC: BPC (CR6)

The backup PC (BPC) is the register where a copy of the PC value is saved when EIT occurs. Bit 31 is fixed at "0". When EIT occurs, the PC value immediately before EIT occurrence or that of the next instruction is set (For details, refer to Chapter 4 "EIT".). The value of the BPC is reloaded to the PC when the **RTE** instruction is executed. However, the values of the lower 2 bits of the PC become "00" on returning (It always returns to the word boundary).

2.4 Accumulator

2.4 Accumulator

The accumulator (ACC) is a 64-bit register used for the DSP function.

Use the **MVTACHI** and **MVTACLO** instructions for writing to the accumulator. The high-order 32 bits (bit 0 to bit 31) can be set with the **MVTACHI** instruction and the low-order 32 bits (bit 32 to bit 63) can be set with the **MVTACLO** instruction. Use the **MVFACHI**, **MVFACLO** and **MVFACMI** instructions for reading from the accumulator. The high-order 32 bits (bit 0 to bit 31) are read with the **MVFACHI** instruction, the low order 32 bits (bit 32 to bit 63) with the **MVFACLO** instruction and the middle 32 bits (bit 16 to bit 47) with the **MVFACMI** instruction.

The **MUL** instruction also uses the accumulator and the contents are destroyed when this instruction is executed.

Note: Bits 0 to 7 are always read as the sign-extended value of bit 8. An attempt to write to this area is ignored.

2.5 Program counter

The program counter (PC) is a 32-bit counter that retains the address of the instruction being executed. Since the M32R CPU instruction starts with even-numbered addresses, the LSB (bit 31) is always "0".

2.6 Data format

2.6.1 Data type

Signed and unsigned integers of byte (8 bits), halfword (16 bits), and word (32 bits) types are supported as data in the M32R CPU instruction set. A signed integer is represented in a 2's complement format.

Signed byte (8-bit) integer	0 7 S
Unsigned byte (8-bit) integer	0 7
Signed halfword (16-bit) integer	0 15 S
Unsigned halfword (16-bit) integer	0 15
Signed word (32-bit) integer	0 31 S
Unsigned word (32-bit) integer	0 31
	S: sign bit

Fig. 2.6.1 Data type

2.6 Data format

2.6.2 Data format

(1) Data format in a register

Data size of a register of the M32R CPU is always a word (32 bits).

Byte (8 bits) and halfword (16 bits) data in memory are sign-extended (the LDB and LDH instructions) or zero-extended (the LDUB and LDUH instructions) to 32 bits, and loaded into the register.

Word (32 bits) data in a register is stored to memory by the **ST** instruction. Halfword (16 bits) data in the LSB side of a register is stored to memory by the **STH** instruction. Byte (8 bits) data in the LSB side of a register is stored to memory by the **STB** instruction.

(2) Data format in memory

Data stored in memory can be one of these types: byte (8 bits), halfword (16 bits) or word (32 bits). Although the byte data can be located at any address, the halfword data and the word data can only be located on the halfword boundary and the word boundary, respectively. If an attempt is made to access data in memory which is not located on the correct boundary, an address exception occurs.

Fig. 2.6.3 Data format in memory
2.7 Notes on use of accumulator

2.7 Notes on use of accumulator

After executing MVTACHI instruction, bits 8 to 15 of ACC become the unjust value by executing RAC or RACH instruction.

So, at setting a value to ACC, it is necessary to execute MVTACLO instruction after executing MVTACHI instruction.

This note restricts M32150F4TFP of M32R family.

CHAPTER 3 ADDRESS SPACE

- 3.1 Summary of address space
- 3.2 Operation modes
- 3.3 Internal ROM and expanded external area
- 3.4 Internal RAM and SFR area
- 3.5 EIT vector entry
- 3.6 ICU vector table
- 3.7 Notes on address space

3.1 Summary of address space

3.1 Summary of address space

The M32150F4TFP provides a 4G-byte linear logical address space, and logical addresses are always accessed by 32 bits wide. The address space of the M32150F4TFP contains the following areas:

- (1) User area
 - Internal ROM area
 - Expanded external area
 - Internal RAM area
 - Special function registers (SFRs) area
- (2) Reserved area (not open to users)
- (3) System area (not open to users)

(1) User area

Two-Gbyte area of addresses H'0000 0000 to H'7FFF FFFF is the user area, where located are the internal ROM, the expanded external area, the internal RAM and the special function registers area (SFRs; the registers of the internal peripheral I/Os). However, the locations of the internal ROM and the expanded external area vary depending on operation modes described later.

(2) Reserved area

One-Gbyte area of addresses H'8000 0000 to H'BFFF FFFF is reserved by MITSUBISHI for the future development and is not open to users.

(3) System area

One-Gbyte area of addresses H'C000 0000 to H'FFFF FFFF is the system area, which is reserved for such development support tools as in-circuit emulators or debugging monitors and is not open to users.

3.1 Summary of address space

3.2 Operation modes

3.2 Operation modes

The M32150F4TFP provides the following operation modes, which can be defined by the MOD0 and MOD1 pins. For the mode of reprogramming the internal flash memory, refer to Section 5.4 "Programming of internal flash memory".

Table 3.	Table 3.2.1 Setting of operation modes							
MOD0	MOD1 (see note 1)	Operation mode (see note 2)						
VSS	VSS	Single chip mode						
VSS	VCC	Expanded external mode						
VCC	VSS	Processor mode						
VCC	VCC	Reserved (Do not use)						

Table 2.0.4. Catting of an aration mode

Notes 1: VCC = +5 V, VSS = GND

2: Refer to Section 5.4 "Programming of internal flash memory" for the mode of reprogramming the flash memory.

The locations of the internal ROM and the expanded external area vary depending on operation modes (the other areas do not). The address maps of the internal ROM and the expanded external area in three modes are shown in Figure 3.2.1. (For the mode of reprogramming the internal flash memory, refer to Section 5.4 "Programming of internal flash memory".)

3.3 Internal ROM and expanded external area

3.3 Internal ROM and expanded external area

The 8M-byte area of addresses H'0000 0000 to H'007F FFFF within the user area is assigned to the internal ROM and the expanded external area, of which 1M bytes of addresses H'0000 0000 to H'000F FFFF are user available, and the other addresses can be seen as ghosts of a 1M-byte quantity each (the ghost areas should not be used inadvertently at programming).

For the relation between the locations of the internal ROM and expanded external area and the M32150F4TFP operation modes, refer to Section 3.2 "Operation modes".

3.3.1 Internal ROM area

Addresses H'0000 0000 to H'0001 FFFF are assigned to the internal ROM (128K bytes), and at the starting address, the EIT vector entry (and the ICU vector table) is located.

3.3.2 Expanded external area

The expanded external area begins at address H'0002 0000 if the expanded external mode is selected out of the operation modes and at address H'0000 0000 if the processor mode selected. When external devices access this area, the control signals they require are output.

Table 3.3.1 shows the addresses of the expanded external area in the three operation modes. When any address within the CS0 or the CSI area is accessed, a $\overline{CS0}$ or a $\overline{CS1}$ signal is output respectively.

Operation mode	Addresses of expanded external area				
Single chip mode	None				
Expanded external mode	Addresses H'0002 0000 to H'0007 FFFF	(CS0 area : 384K bytes)			
	Addresses H'0008 0000 to H'000F FFFF	(CS1 area : 512K bytes)			
Processor mode	Addresses H'0000 0000 to H'0007 FFFF	(CS0 area : 512K bytes)			
	Addresses H'0008 0000 to H'000F FFFF	(CS1 area : 512K bytes)			

Table 3.3.1 Addresses of expanded external area in three operation modes

3.4 Internal RAM and SFR area

3.4 Internal RAM and SFR area

The 8M-byte area of addresses H'0080 0000 to H'00FF FFFF is assigned to the internal RAM and the SFR area, of which the 16K bytes of addresses H'0080 0000 to H'0080 3FFF are user available, and the other addresses can be seen as ghosts of a 16K-byte quantity each (the ghost areas should not be used inadvertently at programming).

3.4.1 Internal RAM area

Addresses H'0080 1000 to H'0080 27FF are assigned to the internal RAM (6K bytes).

3.4.2 SFR (Special Function Register) area

Addresses H'0080 0000 to H'0080 0FFF are assigned to the SFR area, where the registers of the internal peripheral I/Os are located.

Address	+0 number D7	7 D8 number D1				
н.0080 0000	Interrupt vector register (IVECT)					
н'0080 0002						
H'0080 0004	Interrupt mask register (IMASK)					
н'0080 0006	SBI control register (SBICR)					
H'0080 006C	A-D conversion interrupt control register (IADCCR)	SIO0 transmit interrupt control register (ISIO0TXCR)				
H'0080 006E	SIO0 receive interrupt control register (ISIO0RXCR)	SIO1 transmit interrupt control register (ISIO1TXCR)				
H'0080 0070	SIO1 receive interrupt control register (ISIO1RXCR)	DMAC interrupt control register (IDMACCR)				
H'0080 0072	MJT output interrupt control register 0 (IMJTOCR0)	MJT output interrupt control register 1 (IMJTOCR1)				
H'0080 0074	MJT output interrupt control register 2 (IMJTOCR2)	MJT output interrupt control register 3 (IMJTOCR3)				
H'0080 0076	MJT output interrupt control register 4 (IMJTOCR4)	MJT output interrupt control register 5 (IMJTOCR5)				
н'0080 0078	MJT output interrupt control register 6 (IMJTOCR6)	MJT output interrupt control register 7 (IMJTOCR7)				
H'0080 007A	MJT input interrupt control register 0 (IMJTICR0)	MJT input interrupt control register 1 (IMJTICR1)				
H'0080 007C	MJT input interrupt control register 2 (IMJTICR2)	MJT input interrupt control register 3 (IMJTICR3)				
H'0080 007E	MJT input interrupt control register 4 (IMJTICR4)					
н'0080 0080	Single mode register 0 (ADSIM0)	Single mode register 1 (ADSIM1)				
н'0080 0082						
H'0080 0084	Scan mode register 0 (ADSCM0)	Scan mode register 1 (ADSCM1)				
н'0080 0086	·					
н'0080 0088	A-D successive appro	Dximation register (ADSAR)				
H'0080 008A						
H'0080 008C	A-D comparate c					
н'0080 0090	A-D data regi	ster 0 (ADDT0)				
н'0080 0092	A-D data regi	ster 1 (ADDT1)				
н'0080 0094	A-D data regi	ster 2 (ADDT2)				
н'0080 0096	A-D data regi	ster 3 (ADDT3)				
н'0080 0098	A-D data regi	ster 4 (ADDT4)				
H'0080 009A	A-D data regi	ster 5 (ADDT5)				
н'0080 0090	A-D data regi	ster 6 (ADDT6)				
H'0080 009E	A-D data regi	ster 7 (ADDT7)				
H'0080 00A0	A-D data regi	ster 8 (ADDT8)				
H'0080 00A2	A-D data regi	ster 9 (ADDT9)				
H'0080 00A4	A-D data regis	ter 10 (ADDT10)				
H'0080 00A6	A-D data regis	ter 11 (ADDT11)				
H'0080 00A8	A-D data regis	ter 12 (ADDT12)				
H'0080 00AA	A-D data regis	ter 13 (ADDT13)				
H'0080 00AC	A-D data regis	ter 14 (ADDT14)				
H'0080 00AE	A-D data regis	ter 15 (ADDT15)				
H-0080 0100	∼ SIO0 mode re					
H'0080 0102	SIQ0 control register 0 (S0CNT0)	SIQ0 control register 1 (S0CNT1)				
H'0080 0104	SIO0 baud rate register (S0BALIR)	SIO0 interrupt mask register (SOMASK)				
HI0080 0104		SIO0 transmit buffer register (S00XR)				
HI0080 0108	SIO0 status register (S0STAT)	SIO0 receive buffer register (S0RXB)				
0000 0100	≈					
н'0080 0110	SIO1 mode re	gister (S1MOD)				
	SIO1 control register 0 (S1CNT0) SIO1 control register 1 (S1CNT1)					

Fig. 3.4.3 Register mapping of SFR area (1)

Address	. D(+0 number	D7	+1 number D8 D1
		SIQ1 bourd rate register (S1PALIP)		SIQ1 interrupt mask register (S1MAS)
				SIO1 transmit buffer register (S1TVP)
H-0080 01		SIO1 status register (S1STAT)		SIO1 receive buffer register (S1RXB)
H'0080 01	¹¹⁸ _			
HI0080 01	180	Wait number control register (WTCCR)	
		······································	,	
HI0080 0:	200 Ē			Clock hus & input event hus control register (CKIEBCE
H 0080 01	202	Prescaler register 0 (PRS0)		Prescaler register 1 (PRS1)
H 0000 02	204	Prescaler register 2 (PRS2)		
11 0000 02	<u> </u>			Culput event bus control register (CEDOR)
HI0080 0:	210	TCLK input pro	ocessor co	ontrol register (TCLKCR)
H 0080 01	212			http://egister.0.(TINCR0)
H 0080 01	214			http://tegister.o.(TINCR1)
		TIN input pro		register 2 (TINCR2)
	219			http://pagister.2 (TINCR3)
	212			TIN input processor control register 4 (TINCP4
	220	F/F sou		t register 0 (FES0)
		1/1 30		
H·0080 02			protect ro	F/F source select register 1 (FFS1)
H'0080 02				
H'0080 02	226	F/I	r data reg	
H'0080 02	228			F/F protect register 1 (FFP1)
H'0080 02	22A			F/F data register 1 (FFD1)
H'0080 02	22C			
H'0080 02	22E			
H'0080 02	230	TOP interrupt control register 0 (TOPI	R0)	TOP interrupt control register 1 (TOPIR1)
H'0080 02	232	TOP interrupt control register 2 (TOP	IR)	TOP interrupt control register 3 (TOPIR3)
H'0080 02	234	TIO interrupt control register 0 (TIOIF	20)	TIO interrupt control register 1 (TIOIR1)
H'0080 02	236	TIO interrupt control register 2 (TIOIF	R2)	TMS interrupt control register (TMSIR)
н'0080 02	238	TIN interrupt control register 0 (TINIF	RO)	TIN interrupt control register 1 (TINIR1)
H'0080 02	23A	TIN interrupt control register 2 (TINIF	R2)	TIN interrupt control register 3 (TINIR3)
H'0080 02	23C	TIN interrupt control register 4 (TINIF	R4)	TIN interrupt control register 5 (TINIR5)
H'0080 02	23E	TIN interrupt control register 6 (TINIF	R6)	
H'0080 02	240	Т	OP0 count	ter (TOP0CT)
H'0080 02	242	TOP	0 reload re	egister (TOP0RL)
H'0080 02	244			
H'0080 02	246	TOP	0 adjust re	egister (TOP0CC)
	ž			
H'0080 02	250	ТС	OP1 count	ter (TOP1CT)
H'0080 02	252	TOP	1 reload re	egister (TOP1RL)
H'0080 02	254			
н'0080 02	256	TOF	P1 adjust r	egister (TOP1C)
	⊥ ≋.			
н'0080 02	260	T	OP2 coun	ter (TOP2CT)
H'0080 02	262	TOP	2 reload r	egister (TOP2R)
H'0080 02	264			
HI0080 01	266	TOP	2 adjust re	agister (TOP2CC)
		1612		

Fig. 3.4.4 Register mapping of SFR area (2)

Address D0	+0 number	D7 D8	+1 number	D15
н'0080 0268				
#10080 0370	TOP	3 counter (TOP3CT	1	
H-0080 0270			20)	
H-0080 0272	10431		אנ)	
H-0080 0274	TOP3 a	diust register (TOP3		
H.0080 0276				
н'0080 0280	TOP	4 counter (TOP4CT)	
н'0080 0282	TOP4 re	eload register (TOP4	RL)	
H'0080 0284				
н'0080 0286	TOP4 ac	djust register (TOP4	CC)	
H'0080 0290	TOP	5 counter (TOP5CT)	
H'0080 0292	TOP5 re	load register (TOP5	, ;RI)	
H'0080 0294				
H'0080 0296	TOP5 :	diust register (TOP	5C)	
H'0080 0298		,,,.,	,	
H'0080 029A	TOP0 to TOP5	5 control register 0 (TOP05CR0)	
H'0080 029C		TOP0	to TOP5 control register 1 (TOP05	SCR1)
H'0080 029E			U	,
H'0080 02A0	TOF	P6 counter (TOP6CT	.)	
H'0080 02A2	TOP6 r	eload register (TOP	6R)	
H'0080 02A4				
H'0080 02A6	TOP6 av	djust register (TOP6	CC)	
H'0080 02A8			,	
H'0080 02AA	TOP6, TOP7	control register (TC	P67CR)	
H-0080 02B0			7	
H 0080 02B0		blood register (TOP7C1	/ /PI \	
H 0080 02B4				
H 0080 02B1		diust register (TOP7	CC)	
H'0080 02C0	TOF	8 counter (TOP8CT)	
H'0080 02C2	TOP8 re	load register (TOP8	RL)	
H'0080 02C4				
H'0080 02C6	TOP8 ac	djust register (TOP8	CC)	
н'0080 02D0	TO	P9 counter (TOP9C)	
H'0080 02D2	TOP9 re	eload register (TOPS	, IRL)	
H'0080 02D4			•	
H'0080 02D6	TOP9 a	l djust register (TOP9	CC)	
a a [≈		,	,	
H'0080 02E0	TOP1	0 counter (TOP10C	T)	
H'0080 02E2	TOP10 re	eload register (TOP1	ORL)	
H'0080 02E4				
H'0080 02E6	TOP10 ac	djust register (TOP1	0CC)	
H'0080 02E8				
H'0080 02EA	TOP8 to T	OP10 control regist	er (TOP810CR)	

Fig. 3.4.5 Register mapping of SFR area (3)

3.4 Internal RAM and SFR area

Audress	+o number D7	D8 D15
H'0080 02EC		
	¦≈ 	
H'0080 02FA	TOP0 to TOP10 external ena	ble permit register (TOPEEN)
H'0080 02FC	TOP0 to TOP10 enable pr	otect register (TOPPRO)
H'0080 02FE	TOP0 to TOP10 count e	nable register (TOPCEN)
н'0080 0300	TIO0 count	er (TIO0CT)
H'0080 0302		
H'0080 0304	TIO0 reload 1 re	gister (TIO0RL1)
н'0080 0306	TIO0 reload 0/ measu	ire register (TIO0RL0)
	1 7	۱ آ
н'0080 0310	TIO1 count	er (TIO1CT)
H'0080 0312		
H'0080 0314	TIO1 reload 1 re	gister (TIO1RL1)
H'0080 0316	TIO1 reload 0/ measu	ire register (TIO1RL0)
H'0080 0318		
H'0080 031A	TIO0 to TIO3 control	register 0 (TIO03CR0)
H'0080 031C		TIO0 to TIO3 control register 1 (TIO03CR1)
H'0080 031E		
H'0080 0320	TIO2 count	er (TIO2CT)
H'0080 0322		
H'0080 0324	TIO2 reload 1 re	gister (TIO2RL1)
H'0080 0326	TIO2 reload 0/ measu	ire register (TIO2RL0)
	۲ ۲	
н'0080 0330	TIO3 count	er (TIO3CT)
H'0080 0332		
H'0080 0334	TIO3 reload 1 re	gister (TIO3RL1)
н'0080 0336	TIO3 reload 0/ measu	ire register (TIO3RL0)
		1
H'0080 0340	TIO4 count	er (TIO4CT)
H'0080 0342		
H'0080 0344	TIO4 reload 1 re	gister (TIO4RL1)
н'0080 0346	TIO4 reload 0/ measu	ire register (TIO4RL0)
н'0080 0348		
H'0080 034A	TIO4 control register (TIO4CR)	TIO5 control register (TIO5CR)
н'0080 0340		
H'0080 034E		
н'0080 0350	TIO5 count	er (TIO5CT)
н'0080 0352		
н'0080 0354	TIO5 reload 1 re	gister (TIO5RL1)
н'0080 0356	TIO5 reload 0/ measu	ıre register (TIO5RL0)
H'0080 0360	TIO6 count	er (TIO6CT)
H'0080 0362		
H'0080 0364	TIO6 reload 1 re	gister (TIO6RL1)
н'0080 0366	TIO6 reload 0/ measu	ire register (TIO6RL0)
н'0080 0368		
H'0080 036A	TIO6 control register (TIO6CR)	TIO7 control register (TIO7CR)
		- · · · ·

Fig. 3.4.6 Register mapping of SFR area (4)

Address L	+0 number D0	+1 number D7 D8	D15			
H'0080 036E						
н'0080 0370	TIO7 counter (TIO7CT)					
н'0080 0372						
н'0080 0374	TIO7 reload	1 register (TIO7RL1)				
н'0080 0376	TIO7 reload 0/ m	easure register (TIO7RL0)				
Г ~			:			
н'0080 0380	TIO8 c	ounter (TIO8CT)				
н'0080 0382						
н'0080 0384	TIO8 reload	1 register (TIO8RL1)				
н'0080 0386	TIO8 reload 0/ m	easure register (TIO8RL0)				
н'0080 0388						
H'0080 038A	TIO8 control register (TIO8CR)	TIO9 control register (TIO9CR)				
H'0080 038C						
H'0080 038E						
н'0080 0390	TIO9 cr	ounter (TIO9CT)				
H'0080 0392						
н'0080 0394	TIO9 reload	1 register (TIO9RL1)				
н'0080 0396	TIO9 reload 0/ m	easure register (TIO9RL0)				
Γ ĩ			:			
H'0080 03BC	TIO0 to TIO9 enab	ble protect register (TIOPRO)				
H'0080 03BE	TIO0 to TIO9 cour	nt enable register (TIOCEN)				
H'0080 03C0	TMS0 c	ounter (TMS0CT)				
H'0080 03C2	TMS0 measur	re 3 register (TMS0MR3)				
H'0080 03C4	TMS0 measur	re 2 register (TMS0MR2)				
H'0080 03C6	TMS0 measur	re 1 register (TMS0MR1)				
H'0080 03C8	TMS0 measu	re 0 register (TMS0MR0)				
H'0080 03CA	TMS0 control register (TMS0CR)	TMS1 control register (TMS1CR)				
H'0080 03CC						
H'0080 03CE						
H'0080 03D0	TMS1 c	counter (TMS1CT)				
H'0080 03D2	TMS1 measu	re 3 register (TMS1MR3)				
H'0080 03D4	TMS1 measu	re 2 register (TMS1MR2)				
H'0080 03D6	TMS1 measu	re 1 register (TMS1MR1)				
н'0080 03D8	TMS1 measu	re 0 register (TMS1MR0)				
H'0080 03E0	TML counter	high-order (TMLCTH)				
H'0080 03E2	TML counter	r low-order (TMLCTL)				
H'0080 03EA		TML control register (TMLCR)				
H'0080 03EC						
H'0080 03EE						
н'0080 03F0	TML measure 3 re	gister high-order (TMLMR3)				
H'0080 03F2	TML measure 3 rev	gister low-order (TMLMR3L)				
H'0080 03F4	TML measure 2 rec	gister high-order (TMLMR2H)				
H'0080 03F6	TML measure 2 re	gister low-order (TMLMR2L)				
H'0080 03F8	TML measure 1 rec	gister high-order (TMLMR1H)				
	I ML measure 1 register high-order (TMLMR1H)					
H'0080 03FA	TML measure 1 red	gister low-order (TMLMR1L)	I ML measure 1 register low-order (TMLMR1L)			

Fig. 3.4.7 Register mapping of SFR area (5)

3.4 Internal RAM and SFR area

Auuress	D0 D7 D8					
H'0080 03FE	TML measure 0 register lower (TMLMR0L)					
H'0080 03FF						
H'0080 0400	DMA interrupt request status register (DMITS)	DMA interrupt mask register (DMIT	MK)			
H'0080 0410	DMA0 channel control register (DM0CNT)	DMA0 transfer count register (DM0	TCT)			
H'0080 0412						
H'0080 0414						
H'0080 0416	DMA0 source ad	ldress register (DM0SA)				
H'0080 0418						
H'0080 041A	DMA0 destination	address register (DM0DA)				
H'0080 041C						
H'0080 041E						
H'0080 0420	DMA1 channel control register (DM1CNT)	DMA1 transfer count register (DM1	TCT)			
H'0080 0422						
H'0080 0424						
H'0080 0426	DMA1 source ad	dress register (DM1SA)				
H'0080 0428						
H'0080 042A	DMA1 destination a	address register (DM1DA)				
H'0080 042C						
H'0080 042E						
1'0080 0430	DMA2 channel control register (DM2CNT)	DMA2 transfer count register (DM2	TCT)			
1'0080 0432						
1'0080 0434						
1'0080 0436	DMA2 source ad	dress register (DM2SA)				
1'0080 0438						
H'0080 043A	DMA2 destination	address register (DM2DA)				
H'0080 043C						
H'0080 043E						
H'0080 0440	DMA3 channel control register (DM3CNT)	DMA3 transfer count register (DM3	TCT)			
H'0080 0442						
H'0080 0444						
H'0080 0446	DMA3 source ad	dress register (DM3SA)				
H'0080 0448						
1'0080 044A	DMA3 destination	address register (DM3DA)				
H'0080 044C						
H'0080 044E			TOT			
1'0080 0450	DMA4 channel control register (DM4CNT)	DMA4 transfer count register (DM4	ICI)			
I'0080 0452						
1'0080 0454						
1'0080 0456	DMA4 source ad	dress register (DM4SA)				
1'0080 0458						
1'0080 045A	DMA4 destination a	address register (DM4DA)				
1'0080 045C						
H'0080 045E						
H'0080 0460	DMA0 software reques	at generate register (DMUSRI)				
H'0080 0462	DMA1 software request generate register (DM1SRI)					
H'0080 0464	DMA2 software reques	at generate register (DM2SRI)				
H'0080 0466	DMA3 software request generate register (DM3SRI)					

Fig. 3.4.8 Register mapping of SFR area (6)

Addr	ess	+0 number D0	D7 I	+1 number D8	D15
н'0080	0468	DMA4 so	oftware reques	t register (DM4SRI)	
	1				
н'0080	0700	P0 data register (P0DATA)		P1 data register (P1DATA)	
н'0080	0702	P2 data register (P2DATA)		P3 data register (P3DATA)	
н'0080	0704	P4 data register (P4DATA)			
н'0080	0706	P6 data register (P6DATA)		P7 data register (P7DATA)	
н'0080	0708	P8 data register (P8DATA)		P9 data register (P9DATA)	
н'0080	070A	P10 data register (P10DATA	A)	P11 data register (P11DATA)	
н'0080	070C	P12 data register (P12DATA	A)	P13 data register (P13DATA)	
н'0080	070E	P14 data register (P14DATA	A)	P15 data register (P15DATA)	
H10080	0720	PO direction register (PODIR)	P1 direction register (P1DIR)	
H 0080	0720	P2 direction register (P2DIR	·)	P3 register (P3DIR)	
11 0000	0724	P4 direction register (P4DIR	·)		
H 0080	0724	P6 direction register (P6DIR)	P7 direction register (P7DIR)	
H 0080	0728	P8 direction register (P8DIR)	P9 direction register (P9DIR)	
н 0080	072A	P10 direction register (P10DI	R)	P11 direction register (P11DIR)	
H 0080	072C	P12 direction register (P12DI	R)	P13 direction register (P13DIR)	
н'0080	072E	P14 direction register (P14DI	R)	P15 direction register (P15DIR)	
H10080	0746	P6 operation mode register (P6N		P7 operation mode register (P7MOD)
11 0000	0749	P8 operation mode register (P8N		P9 operation mode register (P9MOD)
H-0080	074A	P10 operation mode register (P10	MOD)	P11 operation mode register (P11M	<u>,</u> סט
HI0080	0740	P12 operation mode register (P12	2MOD)	P13 operation mode register (P13MO	D)
н 0080	074E	P14 operation mode register (P14		P15 operation mode register (P15MO	 D)
					- /
н'0080	07E0	Flash mode register (FMOD)		
н'0080	07E2	Flash control register (FCNT	-)	Block erase control register (FBLK)	
H:0080	ਬਸ਼ਹ0	:			
H-0080	OFFE				

Fig. 3.4.9 Register mapping of SFR area (7)

3.5 EIT vector entry

The EIT vector entry is located at the top of the internal ROM and expanded external area, where <u>the branch</u> <u>instruction (not the branch address</u>) to the starting address of each EIT handler is described. For detail refer to Chapter 4 "EIT".

	0	31
н,0000 0000		
H'0000 0004	RL (Reset interrupt)	
H.0000 0008		
H.0000 000G		
H'0000 0010		
H'0000 0014		
H'0000 0018	SBI (System break interrupt)	
H'0000 001C		
H'0000 0020		
H'0000 0024	RIE (Reserved instruction exception)	
H'0000 0028		
H'0000 002C		
H'0000 0030		
H'0000 0034		
H'0000 0038		
H'0000 003C		
H'0000 0040	TRAP0	
H'0000 0044	TRAP1	
H'0000 0048	TRAP2	
H'0000 004C	TRAP3	
H'0000 0050	TRAP4	
H'0000 0054	TRAP5	
H'0000 0058	TRAP6	
H'0000 005C	TRAP7	
H,0000 0060	TRAP8	
H'0000 0064	TRAP9	
H'0000 0068	TRAP10	
H'0000 006C	TRAP11	
H'0000 0070	TRAP12	
H'0000 0074	TRAP13	
H'0000 0078	TRAP14	
H'0000 007C	TRAP15	
H.0000 0080	EI (External interrupt)	
	\downarrow	Ļ

Fig. 3.5.1 EIT vector entry

3.6 ICU vector table

3.6 ICU vector table

The ICU vector table is used by the on-chip interrupt controller. The starting address of the interrupt handler corresponding to the interrupt request of each internal peripheral I/O is described on this table. Refer to Chapter 13 "Interrupt controller" for detail.

Fig. 3.6.1 ICU vector table

3.7 Notes on address space

• Virtual flash emulation

The M32150F4TFP provides the function of mapping the top 4K bytes of the internal RAM to the bottom 4K bytes of the internal ROM (flash memory), called virtual flash emulation. For this function, refer to Section 5.6 "Virtual flash emulation".

3.7 Notes on address space

MEMORANDUM

CHAPTER 4

EIT

- 4.1 Summary of EIT
- 4.2 EIT events of M32150F4TFP
- 4.3 EIT processing procedure
- 4.4 EIT processing mechanism
- 4.5 EIT event acceptance
- 4.6 Save and return of PC and PSW
- 4.7 EIT vector entry
- 4.8 Exception processing
- 4.9 Interrupt processing
- 4.10 Trap processing
- 4.11 EIT priority
- 4.12 EIT processing example

4.1 Summary of EIT

4.1 Summary of EIT

While the CPU is executing a program, sometimes it is necessary to suspend executing, because a certain event occurs, and execute another program. These kinds of events are referred to as EIT (Exception, Interrupt, Trap).

(1) Exception

The event is related to the context being executed. It is generated by errors or violations that occur during instruction execution. With the M32150F4TFP, the address exception (AE) and reserved instruction exception (RIE) are of this type.

(2) Interrupt

The event is not related to the context being executed. It is generated by an external hardware signal. With the M32150F4TFP, the external interrupt (EI), system break interrupt (SBI) and reset interrupt (RI) are of this type.

(3) Trap

This is a software interrupt which is generated by executing the **TRAP** instruction. It is intentionally added to the program by the programmer, as a system call.

Fig. 4.1.1 EIT events

4.2 EIT events of M32150F4TFP

4.2.1 Exception

(1) Reserved instruction exception (RIE)

The reserved instruction exception (RIE) occurs when execution of a reserved instruction (unimplemented instruction) is detected.

(2) Address exception (AE)

The address exception (AE) occurs if an attempt is made to access an unaligned address with either a load instruction or a store instruction.

4.2.2 Interrupt

(1) Reset interrupt (RI)

The reset interrupt (RI) is always accepted when the RESET signal is input. It has the highest priority.

(2) System brake interrupt (SBI)

The system brake interrupt (SBI) is an emergency interrupt request from the \overline{SBI} pin. It is used when a break in power source or an error from an external watchdog timer is detected. After interrupt processing, in principle, the SBI can use only the case that control does not return to the original program that was executing when the interrupt executing.

(3) External interrupt (EI)

The external interrupt (EI) is an interrupt request from peripheral I/O controlled by interrupt controller. The internal interrupt controller controls the interrupt priority by 7 levels.

4.2.3 Trap

The trap (TRAP) is a software interrupt which is generated by executing the **TRAP** instruction. A total of 16 EIT vector entries are available for operands 0 to 15 of the **TRAP** instruction.

4.3 EIT processing procedure

4.3 EIT processing procedure

Part of EIT processing is automatically executed by hardware and part is executed by software (EIT handler) programmed by the user. Except for the reset interrupt and the wakeup interrupt, processing procedures when accepting the EIT event are as follows.

When the EIT is accepted, the M32150F4TFP carries out hardware pre-processing (write later) and then branches to the EIT vector. A entry address allocated for each EIT in the EIT vector. <u>This is where **BRA**</u> instruction (instructions) to the EIT handlers are stored. (Note that these are not branch addresses.)

In hardware pre-processing of M32150F4TFP, the PC contents are saved in the backup PC (BPC) and the PSW field of the PSW register are saved in the BPSW field of the same register.

The user should save the BPC and the PSW register (the BPSW field included), and general-purpose registers to be used by the EIT handler in the stack. <u>(Saving to the stack is the responsibility of the user program.)</u>.

On the completion of execution of the EIT handler, the registers saved in the stack should be restored and then the **RTE** instruction should be executed. Control of the EIT process changes to hardware post-processing, which returns control to the original program (except occurrence of the SBI).

In hardware post-processing of M32150F4TFP, the BPC value is restored to the PC and the BPSW field of the PSW register to the PSW field in the same register.

Fig. 4.3.1 EIT processing procedure overview

4.4 EIT processing mechanism

The M32150F4TFP EIT processing is carried out in the M32R CPU and has a register for backupping of the PC and the PSW (the BPC register and the BPSW field of the PSW register). The EIT processing mechanism in the M32150F4TFP is shown Figure 4.4.1.

Fig. 4.4.1 EIT processing of M32150F4TFP

4.5 EIT event acceptance

4.5 EIT event acceptance

When an EIT event occurs, the M32150F4TFP suspends execution of the current program and branching to the EIT handler occurs. The initiating event and accept timing for each EIT event is given below.

Table 4.5.1 EIT event acceptance

EIT event	Processing type	Accept timing	Value set in BPC
Reserved instruction	Instruction processing	During instruc-	PC value of the instruction where
exception (RIE)	cancel type	tion execution	RIE occurred
Address exception	Instruction processing	During instruc-	PC value of the instruction where
(AE)	cancel type	tion execution	AE occurred
Reset interrupt (RI)	linstruction processing abort type	Each machine cycle	Undefined
System brake	Instruction processing	Each instruction	PC value of the next instruction
interrupt (SBI)	complete type	(word boundary)	
External interrupt	Instruction processing	Each instruction	PC value of the next instruction
(EI)	complete type	(word boundary)	
Trap (TRAP)	Instruction processing complete type	Each instruction	PC value of the TRAP instruction + 4

4.6 Save and return of PC and PSW

Operation is as follows when the EIT event occurs and when the RTE instruction is executed.

Hardwa	re pre-j	proces	sing	when the EIT event occurs
1 SM,	IE and	C bits	savi	ng
The	SM, IE	and C	bits	are saved in the PSW register.
		BSM	<	SM
		BIE	<	IE
		BC	<	С
2 SM,	IE and	C bits	upda	ating
The	SM, IE	and C	bits	are updated in the PSW register.
		SM	<	not changed (RIE, AE, TRAP),
				or cleared to "0" (SBI, EI, RI)
		IE	<	cleared to "0"
		С	<	cleared to "0"
③ PC :	saving			
	Hardwa ① SM, The ② SM, The ③ PC :	Hardware pre- 1 SM, IE and The SM, IE 2 SM, IE and The SM, IE 3 PC saving	Hardware pre-proces ① SM, IE and C bits The SM, IE and C BSM BIE BC ② SM, IE and C bits The SM, IE and C SM IE C ③ PC saving	Hardware pre-processing ① SM, IE and C bits savi The SM, IE and C bits BSM < BIE < BC < ② SM, IE and C bits upda The SM, IE and C bits upda The SM, IE and C bits SM < IE < C < ③ PC saving

PC

The PC is saved. BPC <

Vector address setting

Vector address is set in the PC.

Processing switches to the EIT handler, after branching to the EIT vector and executing the <u>branch</u> instruction (**BRA** instruction) stored there.

(2) Hardware post-processing when the RTE instruction is executed

1 BSM, BIE and BC bits restoring

The BSM, BIE and BC bits are returned from the PSW register.

SM	<	BSM
IE	<	BIE
С	<	BC

2 BPC value restoring

The BPC value is returned from the BPC.

PC < BPC

Note: After executing the **RTE** instruction, the values of the BSM, BIE and BC bits in the BPC and the PSW register are undefined.

4.6 Save and return of PC and PSW

4.7 EIT vector entry

EIT vector entries are located from address H'0000 0000 in the user space. The EIT vector entries are shown below.

Table 4.7.1 EIT vect	or entry				
name	notation	vector address	SM	ΙE	value set in BPC
Reset interrupt	RI	н'0000 0000	0	0	Undefined
		(see note)			
System brake	SBI	н'0000 0010	0	0	PC value of the next instruction
interrupt					
Reserved instruction	RIE	н'0000 0020	no change	0	PC value of the instruction where
exception					RIE occurred
Address exception	AE	н'0000 0030	no change	0	PC value of the instruction where
					AE occurred
Trap	TRAP0	н'0000 0040	no change	0	PC value of the TRAP instruction + 4
	TRAP1	H'0000 0044	no change	0	PC value of the TRAP instruction + 4
	TRAP2	н'0000 0048	no change	0	PC value of the TRAP instruction + 4
	TRAP3	H'0000 004C	no change	0	PC value of the TRAP instruction + 4
	TRAP4	н'0000 0050	no change	0	PC value of the TRAP instruction + 4
	TRAP5	H'0000 0054	no change	0	PC value of the TRAP instruction + 4
	TRAP6	н'0000 0058	no change	0	PC value of the TRAP instruction + 4
	TRAP7	H'0000 005C	no change	0	PC value of the TRAP instruction + 4
	TRAP8	н'0000 0060	no change	0	PC value of the TRAP instruction + 4
	TRAP9	H'0000 0064	no change	0	PC value of the TRAP instruction + 4
	TRAP10	н'0000 0068	no change	0	PC value of the TRAP instruction + 4
	TRAP11	H'0000 006C	no change	0	PC value of the TRAP instruction + 4
	TRAP12	н'0000 0070	no change	0	PC value of the TRAP instruction + 4
	TRAP13	H'0000 0074	no change	0	PC value of the TRAP instruction + 4
	TRAP14	н'0000 0078	no change	0	PC value of the TRAP instruction + 4
	TRAP15	H'0000 007C	no change	0	PC value of the TRAP instruction + 4
External interrupt	EI	н'0000 0080	0	0	PC value of the next instruction

Note : At the flash memory reprogramming, the vector address of reset interrupt moves to the starting address of internal RAM (address H'0080 1000). Refer to section 5.4 "Programming of internal flash memory".

4.8 Exception processing

4.8 Exception processing

4.8.1 Reserved instruction exception (RIE)

[Occurrence condition]

The RIE occurs when attempted execution of a reserved instruction (unimplemented instruction) is detected. An instruction check is made on the instruction op code.

When RIE occurs, that instruction is not executed. Also note that, the RIE is accepted even if an external interrupt has been requested.

[EIT processing]

(1) SM, IE and C bits saving

The SM, IE and C bits in the PSW register are saved.

BSM < SM BIE < IE BC < C

(2) SM, IE and C bits updating

The SM, IE and C bits in the PSW register are updated.

SM	<	not changed
IE	<	0
С	<	0

(3) PC saving

The PC value of the instruction that caused the RIE is set in the BPC. For example, if the instruction caused the RIE is in address 4, "4" is set in the BPC. If it is address 6, then "6" is set. In this case, the value of bit 30 in the BPC indicates whether the instruction that caused the RIE is on the word boundary (BPC[30] = 0) or not (BPC[30] = 1).

In both of the above cases, however, the return address of the **RTE** instruction, after the EIT handler processing, becomes address 4 because the lowest 2 bits are cleared to "00" when returning the BPC value to the PC.

(4) Branching to the EIT vector entry

Processing branches to address H'0000 0020 in user space. The M32150F4TFP carries out hardware pre-processing up to this point.

(5) Branching from the EIT vector entry to the EIT handler

The M32150F4TFP executes the **BRA** instruction written in address H'0000 0020 of the EIT vector entry, and branches to the top address of the handler. At the top address of the EIT handler, the BPC, the PSW register and any necessary general-purpose registers should be saved in the stack.

(6) Returning from the EIT handler

At the end of execution of the EIT handler, the general-purpose registers, the BPC and the PSW register should be returned from the stack and the **RTE** instruction executed. When the **RTE** instruction is executed, hardware post-processing is carried out automatically.

Fig. 4.8.1 Reserved instruction exception (RIE) return address example

4.8 Exception processing

4.8.2 Address Exception (AE)

[Occurrence condition]

The AE occurs if an attempt is made to access an unaligned address with either a load instruction or store instruction. Instructions and address combinations which cause the address exception are as follows:

- when executing the LDH, LDUH and STH instructions and the lowest 2 bits of the address are "01" or "11".
- when executing the LD, ST, LOCK and UNLOCK instructions and the lowest 2 bits of the address are "01", "10" or "11".

When AE occurs, memory access by the initiating instruction is not carried out and the AE is accepted even if an external interrupt has been requested.

[EIT processing]

(1) SM, IE and C bits saving

The SM, IE and C bits in the PSW register are saved.

BSM	<	SM
BIE	<	IE
BC	<	С

(2) SM, IE and C bits updating

The SM, IE and C bits in the PSW register are updated.

<	not changed
<	0
<	0
	< < <

(3) PC saving

The PC value of the instruction that caused the AE is set in the BPC. For example, if the instruction which caused the AE is in address 4, "4" is set in the BPC. If it is address 6, then "6" is set. In this case, the value of bit 30 in the BPC indicates whether the instruction that caused the AE is on the word boundary (BPC[30] = 0) or not (BPC[30] = 1).

In both of the above cases, however, the return address of the **RTE** instruction after EIT handler processing becomes address 4 because the lowest 2 bits are cleared to "00" when returning the BPC value to the PC.

(4) Branching to the EIT vector entry

Processing branches to address H'0000 0030 in user space. The M32150F4TFP carries out hardware pre-processing up to this point.

(5) Branching from the EIT vector entry to the EIT handler

The M32150F4TFP executes the **BRA** instruction written in address H'0000 0030 of the EIT vector entry, and branches to the top address of the handler. At the beginning of the EIT handler, the BPC, the PSW register and any necessary general-purpose registers should be saved in the stack.

(6) Returning from the EIT handler

At the end of the EIT handler, the general-purpose registers, the BPC and the PSW register should be returned from the stack and the **RTE** instruction executed. When the **RTE** instruction is executed, hardware post-processing is carried out automatically.

Fig. 4.8.2 Address exception (AE) return address example

4.9 Interrupt processing

4.9.1 Reset interrupt (RI)

[Occurrence condition]

When an "L" level is input to the RESET pin, the reset interrupt is always accepted for any machine cycle. The reset interrupt has the highest priority of all EIT events.

[EIT processing]

(1) SM, IE and C bits initialization

The SM, IE and C bits in the PSW register are initialized.

SM	<	0
IE	<	0
С	<	0

When a reset interrupt is generated, the values of the BSM, BIE and BC bits are undefined.

(2) Branching to the EIT vector entry

Processing branches to address H'0000 0000 in user space. At the flash memory rewriting (VPP = +12 V), the vector address of reset interrupt moves the starting address of internal RAM (address H'0080 1000). Refer to section 5.4 "Programming of internal flash memory".

(3) Branching from the EIT vector entry to the user program

The M32150F4TFP executes the instruction written in address H'0000 0000 (reset vector entry) of the EIT vector entry, and branches to the top address of the reset handler. In the reset handler, the PSW register and the SPI should be initialized, and then branch to the top address of the user program.

4.9.2 System break interrupt (SBI)

The SBI is an interrupt request from the \overline{SBI} pin. It is used when a break in power source or an error from an external watchdog timer is detected. It is not masked by the IE bit in the PSW register.

It is used in the case that some problem has already occurred until the system when the interrupt is detected, such as a break in power source or an error from an external watchdog timer. In this case, <u>use of the SBI is under the condition that after SBI handler processing, control does not return to the original program that was executing when the SBI occurred.</u>

[Occurrence condition]

The SBI accepts when a fall edge is input to the SBI pin (The SBI is not masked by the IE bit in the PSW register.).

The SBI does not start immediately after a 16-bit instruction on the word boundary is executed (However, with a 16-bit branch instruction, the SBI is accepted immediately after branching.).

M32150F4TFP User's Manual

4.9 Interrupt processing

[EIT processing]

(1) SM, IE and C bits saving

The SM, IE and C bits in the PSW register are saved.

BSM	<	SM
BIE	<	IE
BC	<	С

(2) SM, IE and C bits updating

The SM, IE and C bits in the PSW register are updated.

SM	<	0
IE	<	0
С	<	0

(3) PC saving

The contents of the PC (always a word boundary value) are saved to the BPC.

(4) Branching to the EIT vector entry

Processing branches to address H'0000 0010 in user space. The M32150F4TFP carries out hardware pre-processing up to this point.

(5) Branching from the EIT vector entry to the EIT handler

The M32150F4TFP executes the **BRA** instruction written in address H'0000 0010 of the EIT vector entry, and branches to the top address of the EIT handler.

The SBI is used in the case that some problem has already occurred until the system when the interrupt is detected. Use of the SBI is under the condition that after SBI handler processing, control does not return to the original program that was executing when the SBI occurred.

4.9.3 External interrupt (EI)

The EI is an interrupt request from an internal interrupt controller. In the internal interrupt controller the interrupt controls by 7 levels priority. About detail of interrupt controller, refer to chapter 13 "Interrupt controller", about detaile of interrupt sources, refer to each chapter of internal peripheral I/O.

[Occurrence condition]

The EI is controlled by the internal interrupt controller based on the interrupt request from each of the internal peripheral I/Os. The M32R CPU checks the request at the instruction break point on the word boundary. If there is an interrupt and if the IE bit in the PSW register is "1", the EI is accepted. The EI does not start immediately after the 16-bit instruction on the word boundary is executed (However, with a 16-bit branch instruction, the EI is accepted immediately after branching.).

4.9 Interrupt processing

[EIT processing]

(1) SM, IE and C bits saving

The SM, IE and C bits in the PSW register are saved.

BSM	<	SM
BIE	<	IE
BC	<	С

(2) SM, IE and C bits updating

The SM, IE and C bits in the PSW register are updated.

SM	<	0
IE	<	0
С	<	0

(3) PC saving

The contents of the PC (always a word boundary value) is saved to the BPC.

(4) Branching to the EIT vector entry

Processing branches to address H'0000 0080 in user space. The M32150F4TFP carries out hardware pre-processing up to this point.

(5) Branching from the EIT vector entry to the EIT handler

The M32150F4TFP executes the **BRA** instruction written in address H'0000 0080 of the EIT vector entry, and branches to the top address of the EIT handler. At the top address of the EIT handler, the BPC, the PSW register and any necessary general-purpose registers should be saved in the stack.

(6) Returning from the EIT handler

At the end of the external interrupt EIT handler, return the general-purpose registers, the BPC and the PSW register from the stack and execute the **RTE** instruction.

When the RTE instruction is executed, hardware post-processing is automatically carried out.

4.10 Trap processing

4.10.1 Trap (TRAP)

[Occurrence condition]

The trap is a software interrupt which is generated by executing the **TRAP** instruction. A total of 16 traps are available and specified by operands 0 to 15 of the **TRAP** instruction 16 matching EIT vector entries are available.

[EIT processing]

(1) SM, IE and C bits saving

The SM, IE and C bits in the PSW register are saved.

BSM	<	SM
BIE	<	IE
BC	<	С

(2) SM, IE and C bits updating

The SM, IE and C bits in the PSW register are updated.

SM	<	not changed
IE	<	0
С	<	0

(3) PC saving

When a **TRAP** instruction is executed, "PC value in the **TRAP** instruction + 4" is set in the BPC. For example, if the **TRAP** instruction is in address 4, "8" is set in the BPC. If it is address 6, then "10" is set. In this case, the value of bit 30 in the BPC indicates whether the **TRAP** instruction that caused the trap is within the word boundary (BPC[30] = 0) or not (BPC[30] = 1).

In both of the above cases, however, the return address of the **RTE** instruction after EIT handler processing is completed becomes address 8 because the lowest 2 bits are cleared to "00" when returning the BPC value to the PC.

When a program is created with a standard Mitsubishi assembler, the assembler automatically inserts an **NOP** instruction to the halfword immediately following a **TRAP** instruction located on the word boundary.

(4) Branching to the EIT vector entry

Processing branches to one of addresses H'0000 0040 to H'0000 007C in user space depending on the **TRAP** instruction operand value. The M32150F4TFP carries out hardware pre-processing up to this point.

(5) Branching from the EIT vector entry to the EIT handler

The M32150F4TFP executes the **BRA** instruction written at the relevant address H'0000 0040 - H'0000 007C of the EIT vector entries, and branches to the top address in the EIT handler. At the top address of the EIT handler, the BPC, the PSW register and any necessary general-purpose registers should be saved in the stack.

(6) Returning from the EIT handler

At the end of the EIT handler, the general-purpose registers, the BPC and the PSW register should be returned from the stack and the **RTE** instruction executed. When the **RTE** instruction is executed, hardware post-processing is carried out automatically.

4.10 Trap processing

Fig. 4.10.1 Trap (TRAP) return address example

4.11 EIT priority

The EIT event priority is as follows. When multiple EIT events occur simultaneously, the higher priority event is accepted first.

Table 4.11.1 EIT event priority

Priority	EIT event	Processing type
1 (highest) Reset interrupt (RI)		Instruction abort type
2	Address exception (AE)	Instruction cancel type
	Reserved instruction exception (RIE)	Instruction cancel type
	Trap (TRAP)	Instruction complete type
3 System brake interrupt (SBI)		Instruction complete type
4 External interrupt (EI)		Instruction complete type

The priority of each interrupt request from peripheral I/Os in the EI is set by internal interrupt controller.For detail, refer to Chapter 13 "Interrupt controller".

4.12 EIT processing example

4.12 EIT processing example

Fig. 4.12.1 Processing of RIE, AE, SBI, EI or TRAP event

(2) RIE, AE, TRAP or EI occurred simultaneously

Fig. 4.12.2 Processing of RIE, AE, EI or TRAP simultaneous occurrence

4.12 EIT processing example

Fig. 4.12.3 EIT processing example

4.12 EIT processing example

MEMORANDUM

CHAPTER 5 INTERNAL MEMORY

- 5.1 Summary of internal memory
- 5.2 Internal RAM
- 5.3 Internal flash memory
- 5.4 Programming of internal flash memory
- 5.5 Registers related to internal flash memory
- 5.6 Virtual flash emulation

5.1 Summary of internal memory

5.1 Summary of internal memory

The M32150F4TFP is provided with the following memories.

- 6K-byte RAM
- 128K-byte flash memory

5.2 Internal RAM

The specification of the internal RAM of M32150F4TFP is shown in Table 5.2.1.

ltem	Specification		
Size 6K bytes			
Addresses H'0080 1000 to H'0080 27FF			
Wait insertion	No wait operation (at 25 MHz internal operation)		
Internal bus connection	32-bit bus		
Dual port	Data can be read (monitored) from and written to the whole area of		
	internal RAM externally with serial communications of RTD (real-time		
	debugger) independently of CPU.		

Table 5.2.1 Specification of internal RAM

5.3 Internal flash memory

The specification of the internal flash memory of the M32150F4TFP is shown in Table 5.3.1.

ltem	Specification
Size	128K bytes
Addresses	H'0000 0000 to H'0001 FFFF
Wait insertion	No wait operation (at 25 MHz internal operation)
Internal bus connection	32-bit bus
Other	Virtual flash emulation (refer to Section 5.6 "Virtual flash emulation")

5.4 Registers related to internal flash memory

5.4 Registers related to internal flash memory

The register map related to the internal flash memory is shown in Figure 5.4.1.

Fig. 5.4.1 Register map related to internal flash memory

5.4 Registers related to internal flash memory

5.4.1 Flash mode register (FMOD)

<Address : H'0080 07E0>

<at reset : H'00>

D	Bit name	Function	Ini.	R	W
0 to 6	Not assigned.		0	0	-
7	FMOD (Flash mode)	0: VPPL (+ 5V) applied to VPP	0		-
		(ordinary mode)			
		1: VPPH (+12 V) applied to VPP			

Note: This register is read-only.

The flash mode register (FMOD) is read-only and is read a 1 when VPPH (+12 V) is applied to the VPP pin.

5.4 Registers related to internal flash memory

5.4.2 Flash control register (FCNT)

<Address : H'0080 07E2>

<at reset : H'00>

D	Bit name	Function	Ini.	R	W
0 to 2	Not assigned.		0	0	-
3	FENTRY (Flash mode entry) 0: Ordinary mode		0		
		1: Flash mode if +12 V applied to VPP			
		and this bit set to 1			
4 to 6	Not assigned.		0	0	-
7	FEMMOD	0: Ordinary mode	0		
	(Virtual flash emulation mode)	1: Virtual flash emulation mode;			
		the top 4 KB of RAM is mapped at			
		the bottom 4 KB of flash memory.			

The flash control register (FCNT) contains the following two bits for controlling the flash memory.

(1) FENTRY (Flash mode entry bit D3)

The flash memory enters the flash mode only if VPPH (+12 V) is applied to the VPP pin and this bit is set to 1.

(2) FEMMOD (Virtual flash emulation mode bit D7)

The flash memory enters the virtual flash emulation mode if this bit is set to 1. In the virtual flash emulation mode, the top 4K bytes of the internal RAM (H'0080 1000 to H'0080 1FFF) is mapped at the bottom 4K bytes of the internal flash memory (H'0001 F000 to H'0001 FFFF). (Refer to Section 5.6 "Virtual flash emulation")

5.4 Registers related to internal flash memory

5.4.3 Block erase control register (FBLK)

<at reset : H'00>

D	Bit name	Function	Ini.	R	W
8 to 13	Not assigned.		0	0	-
14, 15	FERSBLK (Block erase)	00: Whole area selected	0		
		01: Block 0 selected			
		10: Block 1 selected			
		11: Whole area selected (the sa	ame as in 00)	(see	note)

Note: Writing by means of selecting blocks makes the feature for writing farther than normal writing significant, as a result, the data-holding characteristics improve. This feature, if used under the condition of writing infrequently during mass production, brings

out merits. In instances in which writing frequently occurs as in developing or making a prototype, use this feature under the condition of selecting the whole areas rather than selecting blocks to increase the frequency of use.

The block erase control register (FBLK) can select the whole area of the 128K-byte flash memory or either of the two 64K-byte blocks of it to be erased. These blocks are as follows:

Block 0: H'0000 0000 to H'0000 FFFF Block 1: H'0001 0000 to H'0001 FFFF

This register must be set before issuing the program or the erase command. The block not selected cannot be programmed or erased because the voltage required is not applied to the block.

5.5.1 Outline of programming flash memory

How to program the flash memory of the M32150F4TFP is explained in the following two cases.

- (1) The software for programming is not loaded in the flash memory.
- (2) The software for programming has been loaded in the flash memory.

In the case of (1), first the software for programming the flash memory is transferred to the internal RAM using the dedicated serial I/O, RSIF (RAM Serial InterFace). The RSIF becomes available by applying +12 V (VPPH) to the MOD1 pin after the VPP pin (power supply to the flash memory) is pulled to VPPH. This state is called the RSIF mode, for the period of which the M32150F4TFP is held reset.

After the software for programming is transferred to the RAM in the RSIF mode, VPPH is removed from the MOD1 pin to allow the M32150F4TFP exiting the reset state. Then, the FENTRY bit of the flash control register (FCNT) is set to 1, and the M32150F4TFP enters the flash mode. In this mode, the reset vector entry moves into the starting address of the internal RAM (usually it is at the starting address of the flash memory). Thus, the software for programming transferred to the RAM begins to program the flash memory. In the case of (2), any event generated (for instance, an input to the selected pin) causes the software for programming loaded in the flash memory to be transferred to the RAM, and control jumps to the starting address of the transferred program. At this time, applying VPPH (+12 V) to the MOD1 pin (the voltage applied can be detected by the FMOD bit of the flash mode register) followed by setting the FENTRY bit of the flash control register to 1 causes the M32150F4TFP to enter the flash memory.

5.5 Programming of internal flash memory

in flash memory)

5.5 Programming of internal flash memory

flash memory)

5.5.2 Operation modes at programming flash memory

The operation modes at programming the flash memory is defined by the MOD0, MOD1 and VPP pins. Table 5.5.1 shows the pin settings and the operation modes at programming the flash memory.

Table .	J.J.I I II	i settings	and operation	on modes at programming	nash memory
MOD0	MOD1	VPP	FENTRY	Operation mode	Reset vector
			(see note	1)	
VSS	VSS	VPPL	-	Single chip mode	Starting address of flash memory
		VPPH	0	Single chip mode	Starting address of RAM
			1	Flash mode	Starting address of RAM
VSS	VCC	VPPL	-	Expanded external mode	Starting address of flash memory
		VPPH	0	Expanded external mode	Starting address of RAM
			1	Flash mode	Starting address of RAM
VSS	VPPH	VPPH	-	RSIF mode	Starting address of RAM

Table 5.5.1 Pin settings and operation modes at programming flash memory

Notes 1: FENTRY bit of flash control register (FCNT) (-: Don't care)

2: VCC = +5 V, VSS = GND, VPPL = +5 V, VPPH = +12 V

(1) Flash mode

The flash mode is used to program and erase the internal flash memory of the M32150F4TFP. In this mode, the program in the flash memory cannot be executed (data can be read by issuing the read command described in Section 5.5.4). If necessary, therefore, the program in the flash memory should be transferred to the internal RAM to be subject to its program prior to entering the flash mode.

(2) Entering flash mode

The M32150F4TFP can enter the flash mode only from the single chip or the expanded external mode by applying VPPH (+12 V) to the VPP pin and setting the FENTRY bit of the flash control register (FCNT) to 1. It cannot enter this mode from the processor mode (MOD0 = VCC, MOD1 = VSS).

(3) VPP voltage and reset vector

When VPPH (+12 V) is applied to the VPP pin, the reset vector entry always moves into the starting address of the internal RAM. If, at this time, the FENTRY bit of the flash control register is set to 1, the M32150F4TFP enters the flash mode (unless the RSIF mode is selected).

(4) RSIF mode

In the RSIF mode, the dedicated serial I/O, RSIF (RAM Serial InterFace), for writing to the RAM is validated. The M32150F4TFP enters reset in this mode.

(5) Entering RSIF mode

To enter the RSIF mode, VPPH (+12 V) is applied to the MOD1 pin after the same voltage is applied to the VPP pin.

To transfer the software for programming the flash memory through the RSIF from the external device to the internal RAM, voltage VPPH (+12 V) is applied to the VPP and MOD1 pins, and then only the MOD1 pin is lowered after the software has been transferred, so that the programming starts at the starting address of the RAM where the reset vector entry has moved.

5.5.3 RSIF (RAM Serial InterFace)

(1) Outline of RSIF

The RSIF (RAM Serial InterFace) is the dedicated serial I/O for transferring software for programing from an external device to the internal RAM when the software for programming the flash memory is not loaded in it (for instance, the flash memory is blank just after shipment). The RSIF is used only to transfer data from the external device to the internal RAM and does not operate in the ordinary operation modes. This interface is not provided with any registers that can be controlled by the CPU, and its input and output pins serve those of channel 0 (SIO0) of the internal serial I/O alternately. To use the RSIF, VPPH (+12 V) is applied to the MOD1 pin after the same voltage is applied to the VPP pin to invoke the RSIF mode. In this mode the M32150F4TFP enters the reset state. The RSIF is provided with the function of only writing data to the internal RAM, not with that of reading data from the RAM. Furthermore, the RSIF can write binary data only, and the data it transfers is stored at the fixed starting address of the RAM. (Addresses where data is stored cannot be designated by the external device.)

Item	Description			
Type and number	UART with 1 channel			
of channels				
Transfer mode	Reception only (LOW level is output from RTX when error occurs)			
Data format	Start bit = 1 bit (fixed)			
	Character length = 8 bits (fixed)			
	Parity bit = even (fixed)			
	Stop bit = 1 bit (fixed)			
	Order of transfer = LSB first fixed			
Baud rate	f(BCLK) = at 25 MHz : 48828 bits/s			
	f(BCLK) = at 20 MHz : 39063 bits/s			
Error detection	Parity and flaming errors (if error occurs, reception disabled, and RTX goes LOW)			
Area available	Internal RAM area of 4 KB (H'0080 1000 to H'0080 1FFF); starting address fixed			
	for transfer			

Table 5.5.2 Description of RSIF

(2) Error detection by RSIF

The RSIF can detect two errors as shown in Table 5.5.3.

Error	Description
Framing error	Occurs when stop bit of received data is not 1 bit
Parity error	Occurs when parity of received data is not even

If any error is detected and the RTX pin goes "L".

To return from the error, remove VPPH (+12 V) from the MOD1 pin and apply it to the pin to initialize the RSIF. Then, restart data transfer.

5.5.4 Procedure of programming internal flash memory

The flash memory can be programmed with the software for programming loaded in the internal RAM after the flash mode is selected. In the flash mode, the internal flash memory cannot be read as in the other operation modes. As a result, any program on the flash memory cannot be executed, so the software for programming the flash memory should be loaded in the internal RAM prior to entering the flash mode. (In the flash mode, byte- and word-accesses to the flash memory are inhibited.)

The flash memory can be accessed by issuing commands to addresses of the memory. These commands are shown in Table 5.5.4.

Name	Issued command data
Read command	H'0000
Program command	H'4040
Program verify command	H'C0C0
Erase command	H'2020
Erase verify command	H'A0A0

Table 5.5.4	Commands	used	in	flash	mode
-------------	----------	------	----	-------	------

Each address on the memory which has been loaded with any command becomes accessible. However, the address loaded with the read command after verifying the memory has no significance; the address to which the verify command was written prior to issuing the read command has been latched and is valid as the read address.

Note that the block erase control register (FBLK) must be set before issuing the program or the erase command (refer to Section 5.4.4). The erase command can erase the whole area of the 128K-byte flash memory or either of the two 64K-byte blocks of it. These blocks are as follows.

Block 0: H'0000 0000 to H'0000 FFFF Block 1: H'0001 0000 to H'0001 FFFF

When either 64K-byte block is selected, the other cannot be programmed or erased.

(1) Read command

Read command H'0000 is loaded in the address to be read from the internal flash memory (the read mode), and the contents at this address can be read out.

(2) Program command

To program the flash memory, first, dummy data is read at the address to be written. Then, program command H'4040 is loaded in this address. A dummy read must be performed to have a constant depth of writing (to preventing from excessive writing and erasure).

<u>The block erase control register (FBLK) must be set before issuing the program command (refer to Section 5.4.4 "Block erase control register (FBLK)"</u>). Either one block or the whole area selected can be programmed.

Programming is carries out automatically by the internal control circuit, it waits for 10 ms using the software or the hardware timer by completing of program.

(3) Program verify command

It is necessary to verify the result of programming. To verify the written program, verify command H'C0C0 is loaded in the address at which program begins, and then the program is read. The program should be verified with the verify command, not the read command.

(4) Erase command

The erase command is used to erase the contents of the internal flash memory. To erase the memory, erase command H'2020 is loaded twice in an arbitrary address of the memory to preventing a fault in erasure.

<u>The block erase control register (FBLK) must be set before issuing the erase command (refer to Section 5.4.4 "Block erase control register (FBLK)"</u>). Either one block or the whole area selected can be erased.

Note that, however, an arbitrary address is allowed to be loaded with this command independently of the setting of the block erase control register.

Programming is carries out automatically by the internal control circuit, it waits for 9.5 ms using the software or the hardware timer by completing of program.

(5) Erase verify command

It is necessary to verify the result of erasing. To verify the written program, erase verify command H'A0A0 is loaded in the address at which erase begins, and then the program is read. The erase shoud be verified with the erase verify command.

If commands are issued continuously, it is necessary to adjust their timings. Flow charts of command execution are shown in Figures 5.5.4 to 5.5.6.

At erasing, the program command loads "0" to all area before erasing by arranging the memory thresold value of erasing.

Fig. 5.5.4 Sequences of reading flash memory

5.5 Programming of internal flash memory

Fig. 5.5.5 Sequences of erasing flash memory

5.5 Programming of internal flash memory

Fig. 5.5.6 Sequences of programming flash memory

5.5.5 Time required to program flash memory

The time required to program the flash memory are shown below.

- (1) Transfer time by RSIF (at transfer data size of 1K bytes) 1/39063 bps × 1 frame × 11 transfer bits × 1K bytes 0.3 s
- (2) Transfer time by SIO (at transfer data size of 128K bytes) 1/39063 bps × 1 frame ×11 transfer bits × 128K bytes 36.0 s
- (3) Flash memory programming time 16 ms (programming + verification) × 2 (average number of retries*) × 64K bytes (data size) 2.0 s
- (4) Erase time (for whole area of 128K bytes) (Writing "0" to all area) + (erase) 6.0[s]
- (5) Total time required to program flash memory (for whole area of 128K bytes) At flash memory blank : (1) + (2) + (3) = 38.3 s
 - At flash memory re-programmed : (2) + (3) + (4) = 44.0 s
 - *: The average number of retries is only a reference value. Also, the CPU time for calculation is excluded because it is of a negligible order.

5.5.6 External protection circuit of VPP/MOD1 pins

By applying the high voltage in the VPP/MOD1 pins, it is necessary to add the external protection circuit to the pin without applying the pin to the voltage beyond maximum ratings. (Especially VPP pin is important for VPP voltage stabilization at loading and erasing to flash.)

Figure 5.5.7 is shown the example of condenser's arrangement for removing the high and low frequency noise.

Fig. 5.5.7 Example of condenser's arrangement for VPP power souce

5.6 Virtual flash emulation

5.6 Virtual flash emulation

The M32150F4TFP provides the function of mapping the top 4K bytes of the internal RAM (H'0080 1000 to H'0080 1FFF) to the bottom 4K bytes of the internal flash memory (H'0001 F000 to H'0001 FFFF), which is called virtual flash emulation. This function together with the on-chip real-time debugger (RTD) facilitate such data tuning that the data table on the internal flash memory can be referenced or rewritten externally. However, the flash memory should be written after the virtual flash emulation mode is terminated.

5.6.1 Area available for virtual flash emulation

Figure 5.6.1 shows the area where virtual flash emulation function is available. However, it is within user's discretion how to use this area.

Fig. 5.6.1 Virtual flash emulation area

5.6.2 Entering virtual flash emulation mode

To enter the virtual flash emulation mode, a 1 is written to the FEMMOD bit of the flash control register (FCNT). When this bit is set to 1, the bottom 4K bytes of the flash memory are replaced by the top 4K bytes of the internal RAM.

5.6 Virtual flash emulation

MEMORANDUM

- 6.1 Summary of reset
- 6.2 Reset operation
- 6.3 Internal states immediately after leaving reset

RESET

6.1 Summary of reset

6.1 Summary of reset

The M32150F4TFP enters the reset state when the RESET pin is strapped "L". Then, pulling the RESET pin "H" removes reset, and the program counter indicates the address of the reset vector entry at which program is executed.

6.2 Reset operation

6.2.1 Reset at power on

At power on, until the oscillation of the on-chip multiply-by-two clock generator of M32150F4TFP is stabilized, the RESET pin must be tied "L".

6.2.2 Reset during operation

To reset the M32150F4TFP during its operation, the RESET pin must be tied "L" for more than 4 clocks of the XIN signal.

6.2.3 Reset vector at rewriting flash memory

When a voltage of +12 V is applied to the VPP pin, the reset vector entry moves to the starting address of the internal RAM (address H'0080 1000). For detail, refer Section 5.4 "Programming of internal flash memory".

6.3 Internal states immediately after leaving reset

The internal states of the M32150F4TFP immediately after leaving reset are shown in Table 6.3.1. For the initial states of the registers associated with the internal peripheral I/Os, refer to the chapter of each of them.

Register		State after rese	State after reset					
PSW	(CR0)	B'0000 0000 0000 ??00 000? 0000 0000						
		(BSM, BIE, BC	bit = Undefined)					
CBR	(CR1)	H'0000 0000	(C bit = 0)					
SPI	(CR2)	Undefined						
SPU	(CR3)	Undefned						
BPC	(CR6)	Undefined						
PC		H'0000 0000	(executes at address H'0000 0000)	(see note)				
ACC	(Accumulator)	Undefined						

Table 6.3.1 Internal states immediately after leaving reset

Note: At rewriting the flash memory (+12 V is applied to VPP), the PC indicates the starting address of the RAM (H'0080 1000).

CHAPTER 7 EXTERNAL BUS INTERFACE

- 7.1 Signals related to external bus interface
- 7.2 Read/write operations
- 7.3 Bus arbitration

7.1 Signals related to external bus interface

7.1 Signals related to external bus interface

The M32150F4TFP provides the signals related to the external bus interface described below. These signals are used in the expanded external mode or the processor mode.

(1) Address bus (A13 to A30)

The M32150F4TFP outputs an 18-bit address bus signal (A13 to A30) capable of addressing 512K bytes of memory space. The least significant bit A31 is not output. In the external write cycle, byte write outputs \overline{BHW} and \overline{BLW} directly indicate that to which byte of the 16-bit data bus valid data is written. In the read cycle, data is always read as 16 bits wide, and the data in the valid byte position is transferred.

(2) Chip selects (CS0, CS1)

In the expanded external mode, $\overline{CS0}$ or $\overline{CS1}$ is output whenever a memory reference is made to the upper or lower half 512K bytes of the 1-Mbyte expanded external area, respectively. However, when a memory reference is made to the area that is assigned to the internal flash memory, $\overline{CS0}$ cannot be output (refer to Chapter 3 "Address space").

(3) Read strobe (RD)

RD is output during an external read cycle, indicating the read timing of read data. RD goes HIGH at a write.

(4) Byte high write (BHW)

BHW indicates that the valid data is transferred on the upper byte (DB0 to DB7) of the 16-bit data bus. BHW goes HIGH in the external read cycles.

(5) Byte low write (BLW)

BLW indicates that the valid data is transferred on the lower byte (DB8 to DB15) of the 16-bit data bus. BHW goes HIGH in the external read cycles.

(6) Data bus (DB0 to DB15)

The 16-bit data bus is used to access external devices.

(7) System clock (BCLK)

BCLK outputs the clock of 25 MHz at 25 MHz internal operation and is used to design synchronous external systems.

(8) Wait (WAIT)

When invoking the external bus cycles, the M32150F4TFP inserts wait cycles automatically for the period of time the WAIT signal is active. For detail, refer to Chapter 14 "Wait controller". The M32150F4TFP always inserts one or more wait cycles at the access to its external device, so that the minimum access to the external device takes one wait cycles (2 BCLK cycles).

7.1 Signals related to external bus interface

(9) Hold controls (HREQ, HACK)

The HOLD state is the state at which the M32150F4TFP stops bus accesses, and the pins related to the bus interface are held high-impedance states. While the M32150F4TFP is at this state, the external bus master can transfer data using the system bus.

Strapping the $\overline{\text{HREQ}}$ pin LOW causes the M32150F4TFP to enter the HOLD state. During the HOLD state after the reception of a hold request or the transition to this state, $\overline{\text{HACK}}$ goes LOW. To return to the normal state from HOLD, $\overline{\text{HREQ}}$ is tied HIGH.

The state of each pin during HOLD is shown in Table 7.1.1.

Table 7.1.1 States of Pins during HOLD

Pin names	State or operation of pin
A13 to A30, DB0 to DB15, CS0, CS1, RD, BHW, BLW	High-impedance
HACK	LOW output
Other pins	Normal state

(10) P7 operation mode register (P7MOD) <Address : H'0080 0747>

The WAIT pin and P71, the HREQ pin and P72, and the HACK pin and P73 share a single pin. Port P7 operation mode register selects the function of port P7. The construction of port P7 mode operation mode register is shown as follows.

P7 operation mode register (P7MOD) <Address : H'0080 0747>

D8	9	10	11	12	13	14	D15
P70MOD	P71MOD	P72MOD	P73MOD	P74MOD	P75MOD	P76MOD	P77MOD

D	Bit name	Function	R W
8	P70MOD	0: P70	?
	(Port P70 operation mode)	1: BCLK	
9	P71MOD	0: P71	?
	(Port P71 operation mode)	1: WAIT	
10	P72MOD	0: P72	?
	(Port P72 operation mode)	1: HREQ	
11	P73MOD	0: P73	?
	(Port P73 operation mode)	1: HACK	
12	P74MOD	0: P74	?
	(Port P74 operation mode)	1: RTDTXD	
13	P75MOD	0: P75	?
	(Port P75 operation modd)	1: RTDRXD	
14	P76MOD	0: P76	?
	(Port P76 operation mode)	1: RTDACK	
15	P77MOD	0: P77	?
	(Port P77 operation mode)	1: RTDCLK	

R = ? : Undefined readout value

ant react + HIOON

7.2 Read/write operations

7.2 Read/write operations

External read/write operations are performed with the address bus, the data bus, and the CS0, CS1, RD, BHW, BLW, and WAIT signals. In the external read cycle, RD goes LOW, and both BHW and BLW go HIGH to read data at the required byte position.

In the external write cycle, either BHW or BLW goes LOW according to the byte position to be written.

In external bus cycles, waits are inserted successively if WAIT is held LOW, so it should be tied HIGH if not needed. The M32150F4TFP always inserts no less than one cycles at the access to its external device, so that the minimum access to the external device takes one wait (2 BCLK cycles).

Fig. 7.2.1 Internal bus access at bus vacant

EXTERNAL BUS INTERFACE

7.2 Read/write operations

EXTERNAL BUS INTERFACE

7.2 Read/write operations

7.3 Bus arbitration

7.3 Bus arbitration

When a LOW input to the $\overline{\text{HREQ}}$ pin is accepted, the M32150F4TFP enters the HOLD state to drive the HACK pin LOW. During HOLD, the pins associated with the bus interface are held high-impedance states, and data can be transferred on the system bus. To return to the normal state from HOLD, $\overline{\text{HREQ}}$ is tied HIGH.

Fig. 7.3.1 Bus arbitration timing
EXTERNAL BUS INTERFACE

7.3 Bus arbitration

MEMORANDUM

CHAPTER 8 I/O PORT AND PIN FUNCTION

- 8.1 Summary of I/O ports
- 8.2 Selection of pin functions
- 8.3 Registers related to I/O ports
- 8.4 Port peripheral circuit

8.1 Summary of I/O ports

8.1 Summary of I/O ports

The M32150F4TFP is provided with I/O ports P0 to P15 (P5 is MITSUBISHI reserved), which consist of a total of 109 I/O pins. These pins can be designated as input or output pins with their port direction registers. Each port pin serves the alternative function of an internal peripheral I/O port pin/an expanded external busline, and the function of each port pin can be defined by the MOD0 and MOD1 pins or the corresponding I/O port operation mode register (port pins that serve two peripheral I/O pin functions should further be specified by the corresponding register of each peripheral I/O).

The outline of the I/O port pins is shown in Table 8.1.1.

Item	Description						
Number of pins	109 in total						
	P0: P00 to P07 (8)						
	P1: P10 to P17 (8)						
	P2: P20 to P27 (8)						
	P3: P30 to P37 (8)						
	P4: P41 to P47 (7)						
	P6: P61 to P67 (7)						
	P7: P70 to P77 (8)						
	P8: P82 to P87 (6)						
	P9: P93 to P97 (5)						
	P10: P100 to P107 (8)						
	P11: P110 to P117 (8)						
	P12: P124 to P127 (4)						
	P13: P130 to P137 (8)						
	P14: P140 to P147 (8)						
	P15: P150 to P157 (8)						
Port function	Each port pin can be selected as input or output by setting corresponding bit						
	of port direction register (P64 is SBI input-only port)						
Pin function	Alternative function of peripheral I/O pin/expanded external busline						
	(or triple functions of peripheral I/O pins)						
Selection of pin function	P0 to P4 Pins : Using operation mode definition pins MOD0 and MOD1						
	P6 to P15 Pins : Using operation mode register of each port						
	(peripheral I/O pin functions are selectable by corresponding						
	register of peripheral I/O)						

Table 8.1.1 Outline of I/O port pins

8.2 Selection of pin function

Each port pin serves the alternative function of an internal peripheral I/O port pin/an expanded external busline (or triple functions of peripheral I/O pins), and the function of each port pin can be defined by the MOD0 and MOD1 pins or the corresponding I/O port operation mode register.

When the expanded external mode or the processor mode is selected as an operation mode of the M32150F4TFP, all of the P0 to P4 port pins serve the function of accessing external devices. The operation mode is defined by the setting of the MOD0 and MOD1 pins as shown in Table 8.2.1.

Table 8.2.1 Operation mode and P0 to P4	pin function
---	--------------

MOD0	MOD1	Operation mode	P0 to P4 pin function	
VSS	VSS	Single chip mode	I/O pin	
VSS	VCC	External expanded mode	External expanded signal pin	
VCC	VSS	Processor mode		
VCC	VCC	Reserved (not used)	-	

Note : VCC = +5 V, VSS = GND

Each of the P6 to P15 port pins serves as I/O port pin or internal peripheral I/O pin by setting the operation mode register of each port. Port pins that serve two peripheral I/O pin functions should further be specified by the corresponding register of each peripheral I/O.

The setting of the VPP and MOD1 pins at rewriting the internal flash memory does not affect pin functions.

8.2 Selection of pin function

		0	1	2	3	4	5	6	7
	P0	DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7
	P1	DB8	DB9	DB10	DB11	DB12	DB13	DB14	DB1
Setting of chip operation modes (see note)	P2	A23	A24	A25	A26	A27	A28	A29	A30
	P3	A15	A16	A17	A18	A19	A20	A21	A22
	P4		BLW	BHW	RD	CS0	CS1	A13	A14
(Reserved)	P5								
	P6		(P61)	(P62)	(P63)	SBI	ADSEL0	ADSEL1	ADTR
	P7	BCLK	WAIT	HREQ	HACK	RTDTXD	RTDRXD	RTDACK	RTDC
	P8			TXD0	RXD0	SCLKI 0 / SCLKO 0	TXD1	RXD1	SCLK / SCLK
	P9				TO 16	TO 17	TO 18	TO 19	TO 2
Setting of I/O port	P10	TO 8	ТО 9	TO 10	TO 11	TO 12	TO 13	TO 14	TO 1
registers	P11	TO 0	TO 1	TO 2	TO 3	TO 4	TO 5	TO 6	тот
	P12					TCLK 0	TCLK 1	TCLK 2	TCLK
	P13	TIN 16	TIN 17	TIN 18	TIN 19	TIN 20	TIN 21	TIN 22	TIN 2
	P14	TIN 8	TIN 9	TIN 10	TIN 11	TIN 12	TIN 13	TIN 14	TIN 1
	P15	TIN 0	TIN 1	TIN 2	TIN 3	TIN 4	TIN 5	TIN 6	TIN

1

8.3 Registers related to I/O ports

The registers related to the I/O ports include the port data registers, the port direction registers, and the port operation mode registers. The port operation mode registers have only ports P6 to P15. Ports P0 to P4 define by setting the operation mode (MOD0 and MOD1)

Port P5 is MITSUBISHI reserved. Figure 8.3.1 shows the address map of registers related to the I/O ports.

Address	+0 number D0	D7	+1 number D8	D15
H'0080 0700	P0 data register (P0DATA))	P1 data register (P	P1DATA)
н'0080 0702	P2 data register (P2DATA))	P3 data register (P	P3DATA)
H'0080 0704	P4 data register (P4DATA))	reserved (see r	note)
н'0080 0706	P6 data register (P6DATA))	P7 data register (P	P7DATA)
н'0080 0708	P8 data register (P8DATA))	P9 data register (P	P9DATA)
H'0080 070A	P10 data register (P10DAT/	۹)	P11 data register (P	P11DATA)
H'0080 070C	P12 data register (P12DATA	۹)	P13 data register (P	P13DATA)
H'0080 070E	P14 data register (P14DATA	۹)	P15 data register (P	P15DATA)
	\approx			\sim
H'0080 0720	P0 direction register (P0DIR	.)	P1 direction register	r (P1DIR)
H'0080 0722	P2 direction register (P2DIR	.)	P3 direction register	r (P3DIR)
н'0080 0724	P4 direction register (P4DIR	.)	reserved (see r	note)
н'0080 0726	P6 direction register (P6DIR	.)	P7 direction register	r (P7DIR)
н'0080 0728	P8 direction register (P8DIR	.)	P9 direction register	r (P9DIR)
H'0080 072A	P10 direction register (P10DI	R)	P11 direction register	r (P11DIR)
H'0080 072C	P12 direction register (P12DI	R)	P13 direction register	r (P13DIR)
H'0080 072E	P14 direction register (P14DI	R)	P15 direction register	r (P15DIR)
	\sim			\sim
	,	Note:	Port P5 is MITSUBISI	HI reserved.

8.3 Registers related to I/O ports

Addr	ess	+0 number D0	D7	+1 number D8	D15
н'0080	0746	P6 operation mode register (P6MOD)	P7 operation mode register (P	7MOD)
н'0080	0748	P8 operation mode register (P8MOD)	P9 operation mode register (P	9MOD)
н'0080	074A	P10 operation mode register	(P10MOD)	P11 operation mode register (I	P11MOD)
н'0080	074C	P12 operation mode register	(P12MOD)	P13 operation mode register (I	P13MOD)
н'0080	074E	P14 operation mode register	(P14MOD)	P15 operation mode register (I	P15MOD)

Fig. 8.3.1 Register map related to I/O port (2/2)

8.3 Registers related to I/O ports

8.3.1 Port data register

P0 data register (P0DATA)	<address 0700="" :="" h'0080=""></address>
P1 data register (P1DATA)	<address 0701="" :="" h'0080=""></address>
P2 data register (P2DATA)	<address 0702="" :="" h'0080=""></address>
P3 data register (P3DATA)	<address 0703="" :="" h'0080=""></address>
P4 data register (P4DATA)	<address 0704="" :="" h'0080=""></address>
P6 data register (P6DATA)	<address 0706="" :="" h'0080=""></address>
P7 data register (P7DATA)	<address 0707="" :="" h'0080=""></address>
P8 data register (P8DATA)	<address 0708="" :="" h'0080=""></address>
P9 data register (P9DATA)	<address 0709="" :="" h'0080=""></address>
P10 data register (P10DATA)	<address 070a="" :="" h'0080=""></address>
P11 data register (P11DATA)	<address 070b="" :="" h'0080=""></address>
P12 data register (P12DATA)	<address 070c="" :="" h'0080=""></address>
P13 data register (P13DATA)	<address 070d="" :="" h'0080=""></address>
P14 data register (P14DATA)	<address 070e="" :="" h'0080=""></address>
P15 data register (P15DATA)	<address 070f="" :="" h'0080=""></address>

D0	1	2	3	4	5	6	D7
(D8	9	10	11	12	13	14	D15)
Pn0DT	Pn1DT	Pn2DT	Pn3DT	Pn4DT	Pn5DT	Pn6DT	Pn7DT

Note : n = 0 to 15 (except for P5)

		<at reset<="" th=""><th>: Un</th><th>defined></th></at>	: Un	defined>
D	Bit name	Function	R	W
0	Pn0DT (Port Pn0 Data)	By setting of port direction register		
1	Pn1DT (Port Pn1 Data)	• Direction bit of port direction register = 0 (input mode)		
2	Pn2DT (Port Pn2 Data)	0: port input pin is LOW		
3	Pn3DT (Port Pn3 Data)	1: port input pin is HIGH		
4	Pn4DT (Port Pn4 Data)			
5	Pn5DT (Port Pn5 Data)	• Direction bit of port direction register = 1 (output mode)	
6	Pn6DT (Port Pn6 Data)	0: Port output latch is LOW		
7	Pn7DT (Port Pn7 Data)	1: Port output latch is HIGH		

Notes 1: The following bits are not implemented (read undefined, and write invalid). P40, P60, P80, P81, P90 to P92, and P120 to P123

2: Pin P64 is read-only (input mode only). Bit P64DT is write disabled.

8.3 Registers related to I/O ports

8.3.2 Port direction register

P0 direction register (P0DIR)	<address 0720="" :="" h'0080=""></address>
P1 direction register (P1DIR)	<address 0721="" :="" h'0080=""></address>
P2 direction register (P2DIR)	<address 0722="" :="" h'0080=""></address>
P3 direction register (P3DIR)	<address 0723="" :="" h'0080=""></address>
P4 direction register (P4DIR)	<address 0724="" :="" h'0080=""></address>
P6 direction register (P6DIR)	<address 0726="" :="" h'0080=""></address>
P7 direction register (P7DIR)	<address 0727="" :="" h'0080=""></address>
P8 direction register (P8DIR)	<address 0728="" :="" h'0080=""></address>
P9 direction register (P9DIR)	<address 0729="" :="" h'0080=""></address>
P10 direction register (P10DIR)	<address 072a="" :="" h'0080=""></address>
P11 direction register (P11DIR)	<address 072b="" :="" h'0080=""></address>
P12 direction register (P12DIR)	<address 072c="" :="" h'0080=""></address>
P13 direction register (P13DIR)	<address 072d="" :="" h'0080=""></address>
P14 direction register (P14DIR)	<address 072e="" :="" h'0080=""></address>
P15 direction register (P15DIR)	<address 072f="" :="" h'0080=""></address>
,	

D0	1	2	3	4	5	6	D7
(D8	9	10	11	12	13	14	D15)
Pn0DIR	Pn1DIR	Pn2DIR	Pn3DIR	Pn4DIR	Pn5DIR	Pn6DIR	Pn7DIR

Note : n = 0 to 15 (except for P5)

<at reset : H'00>

D	Bit name	Function	R	W
0	Pn0DIR (Port Pn0 direction)	0: input mode (at reset)	?	
1	Pn1DIR (Port Pn1 direction)	1: output mode	?	
2	Pn2DIR (Port Pn2 direction)		?	
3	Pn3DIR (Port Pn3 direction)		?	
4	Pn4DIR (Port Pn4 direction)		?	
5	Pn5DIR (Port Pn5 direction)		?	
6	Pn6DIR (Port Pn6 direction)		?	
7	Pn7DIR (Port Pn7 direction)		?	

R = ?: Undefined readout value

Notes 1: The following bits are not implemented (read undefined, and write invalid).

P40, P60, P64, P80, P81, P90 to P92, and P120 to P123

2: Read back as either 0 or 1.

3: All port pins are set to input mode at reset.

4: Pin P64 is input mode only (read-only). Bit P64DIR is not provided.

8.3 Registers related to I/O ports

8.3.3 Port operation mode register

 P6 operation mode register (P6MOD)
 <Address : H'0080 0746>

 D0
 1
 2
 3
 4
 5
 6
 D7

 Image: Im

			<at :="" h'00="" reset=""></at>
D	Bit name	Function	R W
0 to 4	Not assigened.		? -
5	P65MOD	0: P65	?
	(Port P65 operation mode)	1: ADSEL0	
6	P66MOD	0: P66	?
	(Port P66 operation mode)	1: ADSEL1	
7	P67MOD	0: P67	?
	(Port P67 operation mode)	1: ADTRG	
			D 2 Lindefined readout value

R = ? : Undefined readout value W = - : Write invalid

Notes 1: Pin P60 is not provided.

2: Pins P61 to P63 are always I/O pins (single function).

3: Pin P64 is the pin dedicated SBI input. it is possible to know the pin level by reading the data register of pin P64.

8.3 Registers related to I/O ports

P7 operation mode register (P7MOD) <Address : H'0080 0747>

D8	9	10	11	12	13	14	D15
P70MOD	P71MOD	P72MOD	P73MOD	P74MOD	P75MOD	P76MOD	P77MOD

				<at :="" h'00="" reset=""></at>
D	Bit name	Function	R	W
8	P70MOD	0: P70	?	
	(Port P70 operation mode)	1: BCLK		
9	P71MOD	0: P71	?	
	(Port P71 operation mode)	1: WAIT		
10	P72MOD	0: P72	?	
	(Port P72 operation mode)	1: HREQ		
11	P73MOD	0: P73	?	
	(Port P73 operation mode)	1: HACK		
12	P74MOD	0: P74	?	
	(Port P74 operation mode)	1: RTDTXD		
13	P75MOD	0: P75	?	
	(Port P75 operation mode)	1: RTDRXD		
14	P76MOD	0: P76	?	
	(Port P76 operation mode)	1: RTDACK		
15	P77MOD	0: P77	?	
	(Port P77 operation mode)	1: RTDCLK		

8.3 Registers related to I/O ports

P8 operation mode register (P8MOD) <Address : H'0080 0748>

			<at :="" h'00="" reset=""></at>
D	Bit name	Function	R W
0, 1	Not assigned.		? -
2	P82MOD	0: P82	?
	(Port P82 operation mode)	1: TXD0	
3	P83MOD	0: P83	?
	(Port P83 operation mode)	1: RXD0	
4	P84MOD	0: P84	?
	(Port P84 operation mode)	1: SCLKI 0/SCLKO 0	
5	P85MOD	0: P85	?
	(Port P85 operation mode)	1: TXD1	
6	P86MOD	0: P86	?
	(Port P86 operation mode)	1: RXD1	
7	P87MOD	0: P87	?
	(Port P87 operation mode)	1: SCLKI 1/SCLKO 1	

R = ? : Undefined readout value

W = - : Write invalid

Note: Pins P80 and P81 are not provided.

8.3 Re	egisters re	elated t	o I/O j	ports							
F	P9 operation mode register (P9MOD) <address 07<="" :="" h'0080="" th=""><th>80 0749</th><th>></th><th></th><th></th></address>					80 0749	>				
	D8	9	10	11	12	13	14	D15			
				P93MOD	P94MOD	P95MOD	P96MOD	P97MOD			
										<at reset<="" th=""><th>: H'00></th></at>	: H'00>
D	Bit name					Function				R	W
8 to 10	Not assign	ed.								?	-
11	P93MOD					0: P93				?	
	(Port P93	operation	mode)			1: TO 16	6				
12	P94MOD					0: P94				?	
	(Port P94	operation	mode)			1: TO 17	7				

D	Bit name	Function	R W
8 to 10	Not assigned.		? -
11	P93MOD	0: P93	?
	(Port P93 operation mode)	1: TO 16	
12	P94MOD	0: P94	?
	(Port P94 operation mode)	1: TO 17	
13	P95MOD	0: P95	?
	(Port P95 operation mode)	1: TO 18	
14	P96MOD	0: P96	?
	(Port P96 operation mode)	1: TO 19	
15	P97MOD	0: P97	?
	(Port P97 operation mode)	1: TO 20	

R = ? : Undefined readout value W = - : Write invalid

Note: Pins P90 to P92 are not provided.

8.3 Registers related to I/O ports

P10 operation mode register (P10MOD)

<Address : H'0080 074A>

D0	1	2	3	4	5	6	D7
P100MO	D P101MOD	P102MOD	P103MOD	P104MOD	P105MOD	P106MOD	P107MOD

			<at :="" h'00="" reset=""></at>
D	Bit name	Function	R W
0	P100MOD	0: P100	?
	(Port P100 operation mode)	1: TO 8	
1	P101MOD	0: P101	?
	(Port P101 operation mode)	1: TO 9	
2	P102MOD	0: P102	?
	(Port P102 operation mode)	1: TO 10	
3	P103MOD	0: P103	?
	(Port P103 operation mode)	1: TO 11	
4	P104MOD	0: P104	?
	(Port P104 operation mode)	1: TO 12	
5	P105MOD	0: P105	?
	(Port P105 operation mode)	1: TO 13	
6	P106MOD	0: P106	?
	(Port P106 operation mode)	1: TO 14	
7	P107MOD	0: P107	?
	(Port P107 operation mode)	1: TO 15	

8.3 Registers related to I/O ports

P11 operation mode register (P11MOD) <Address : H'0080 074B>

D8	9	10	11	12	13	14	D15
P110MOD	P111MOD	P112MOD	P113MOD	P114MOD	P115MOD	P116MOD	P117MOD

			<at :="" h'00="" reset=""></at>
D	Bit name	Function	R W
8	P110MOD	0: P110	?
	(Port P110 operation mode)	1: TO 0	
9	P111MOD	0: P111	?
	(Port P111 operation mode)	1: TO 1	
10	P112MOD	0: P112	?
	(Port P112 operation mode)	1: TO 2	
11	P113MOD	0: P113	?
	(Port P113 operation mode)	1: TO 3	
12	P114MOD	0: P114	?
	(Port P114 operation mode)	1: TO 4	
13	P115MOD	0: P115	?
	(Port P115 operation mode)	1: TO 5	
14	P116MOD	0: P116	?
	(Port P116 operation mode)	1: TO 6	
15	P117MOD	0: P117	?
	(Port P117 operation mode)	1: TO 7	

8.3 Registers related to I/O ports

			<at :="" h'00="" reset=""></at>
D	Bit name	Function	R W
0 to 3	Not assigened.		? -
4	P124MOD	0: P124	?
	(Port P124 operation mode)	1: TCLK 0	
5	P125MOD	0: P125	?
	(Port P125 operation mode)	1: TCLK 1	
6	P126MOD	0: P126	?
	(Port P126 operation mode)	1: TCLK 2	
7	P127MOD	0: P127	?
	(Port P127 operation mode)	1: TCLK 3	

R = ? : Undefined readout value

W = - : Write invalid

Note: Pins P120 to P123 are not provided.

8.3 Registers related to I/O ports

P13 operation mode register (P13MOD) <Address : H'0080 074D>

D8	9	10	11	12	13	14	D15
P130MO	D P131MOD	P132MOD	P133MOD	P134MOD	P135MOD	P136MOD	P137MOD

			<at :="" h'00="" reset=""></at>
D	Bit name	Function	R W
8	P130MOD	0: P130	?
	(Port P130 operation mode)	1: TIN 16	
9	P131MOD	0: P131	?
	(Port P131 operation mode)	1: TIN 17	
10	P132MOD	0: P132	?
	(Port P132 operation mode)	1: TIN 18	
11	P133MOD	0: P133	?
	(Port P133 operation mode)	1: TIN 19	
12	P134MOD	0: P134	?
	(Port P134 operation mode)	1: TIN 20	
13	P135MOD	0: P135	?
	(Port P135 operation mode)	1: TIN 21	
14	P136MOD	0: P136	?
	(Port P136 operation mode)	1: TIN 22	
15	P137MOD	0: P137	?
	(Port P137 operation mode)	1: TIN 23	

8.3 Registers related to I/O ports

P14 operation mode register (P14MOD)

<Address : H'0080 074E>

D0	1	2	3	4	5	6	D7
P140MOD	P141MOD	P142MOD	P143MOD	P144MOD	P145MOD	P146MOD	P147MOD

			<at :="" h'00="" reset=""></at>
D	Bit name	Function	R W
0	P140MOD	0: P140	?
	(Port P140 operation mode)	1: TIN 8	
1	P141MOD	0: P141	?
	(Port P141 operation mode)	1: TIN 9	
2	P142MOD	0: P142	?
	(Port P142 operation mode)	1: TIN 10	
3	P143MOD	0: P143	?
	(Port P143 operation mode)	1: TIN 11	
4	P144MOD	0: P144	?
	(Port P144 operation mode)	1: TIN 12	
5	P145MOD	0: P145	?
	(Port P145 operation mode)	1: TIN 13	
6	P146MOD	0: P146	?
	(Port P146 operation mode)	1: TIN 14	
7	P147MOD	0: P147	?
	(Port P147 operation mode)	1: TIN 15	

8.3 Registers related to I/O ports

P15 operation mode register (P15MOD) <Address : H'0080 074F>

D8	9	10	11	12	13	14	D15
P150MOD	P151MOD	P152MOD	P153MOD	P154MOD	P155MOD	P156MOD	P157MOD

			<at :="" h'00="" reset=""></at>
D	Bit name	Function	R W
8	P150MOD	0: P150	?
	(Port P150 operation mode)	1: TIN 0	
9	P151MOD	0: P151	?
	(Port P151 operation mode)	1: TIN 1	
10	P152MOD	0: P152	?
	(Port P152 operation mode)	1: TIN 2	
11	P153MOD	0: P153	?
	(Port P153 operation mode)	1: TIN 3	
12	P154MOD	0: P154	?
	(Port P154 operation mode)	1: TIN 4	
13	P155MOD	0: P155	?
	(Port P155 operation mode)	1: TIN 5	
14	P156MOD	0: P156	?
	(Port P156 operation mode)	1: TIN 6	
15	P157MOD	0: P157	?
	(Port P157 operation mode)	1: TIN 7	

8.4 Port peripheral circuit

8.4 Port peripheral circuit

Port peripheral circuit is shown Figure 8.4.1 to Figure 8.4.4.

Fig. 8.4.1 Port peripheral circuit diagram (1)

8.4 Port peripheral circuit

8.4 Port peripheral circuit

Fig. 8.4.3 Port peripheral circuit diagram (3)

8.4 Port peripheral circuit

Fig. 8.4.4 Port peripheral circuit diagram (4)

- 9.1 Summary of DMAC
- 9.2 Registers related to DMAC
- 9.3 Functional description of DMAC
- 9.4 Notes on use of DMAC

9.1 Summary of DMAC

9.1 Summary of DMAC

The M32150F4TFP is provided with 5 channels of the DMAC (Direct Memory Access Controller), which performs high-speed data transfer between internal peripheral I/Os, between internal RAM and internal peripheral I/O, and between internal RAMs by software triggering or request from internal peripheral I/Os.

Item	Description
Number of Channels	5 channels
Transfer requests	Software trigger
	 Request from internal peripheral I/Os: A-D converter, multi-junction
	timers, and serial I/O (channels 0 and 1: receive complete,
	channel 0: transmit buffer empty)
	 DMA channels can be connected in cascade (see note 1)
Number of maximum transfers	256 times
Address space available	 64K bytes (address space of H'0080 0000 to H'0080 FFFF)
in transfer	(see note 2)
	• Supports transfer between internal peripheral I/Os, between internal
	RAM and internal peripheral I/O, and between internal RAMs
Transfer data size	16 bits or 8 bits
Transfer method	Single transfer DMA (internal bus is relinquished at each DMA transfer)
	Dual address transfer
Transfer direction mode	Fixed address or incremented address is selectable for source and
	destination addresses.
Channel priority	Channel 0 > channel 1 > channel 2 > channel 3 > channel 4 (fixed priority)
Maximum transfer rate	16.6 M bytes/s (at 25 MHz internal operation)
Interrupt request	An interrupt request can be generated at the underflow of each transfer
	count register.
Others	The ring buffer mode available

Table 9.1.1 Summary of DMAC

Notes 1: DMA channels can be connected in cascade in the following way:

The DMA transfer of channel 1 is started upon end of the DMA transfer of channel 0. The DMA transfer of channel 2 is started upon end of the DMA transfer of channel 1. The DMA transfer of channel 0 is started upon end of the DMA transfer of channel 2. The DMA transfer of channel 4 is started upon end of the DMA transfer of channel 3.

2: The addresses following the beginning 16K bytes in the internal RAM/SFR area (H'0080 4000 to H'0080 FFFF) are ghosts (not to be designated as transfer addresses of DMAC).

DMAC 9.1. Summary of DMAC

Fig. 9.1.1 Block diagram of DMAC

9.2 Registers related to DMAC

9.2 Registers related to DMAC

The memory map of the registers related to the DMAC is shown Figure 9.2.1.

Address	+0 number D0 D7	+1 number D8	D15
н'00800400	DMA interrupt request status register (DMITST)	DMA interrupt mask register (DMITMK)	
\tilde{a}			$\widehat{}$
н'00800410	DMA0 channel control register (DM0CNT)	DMA0 transfer count register (DM0TCT)	r
н'00800412	reserved	reserved	
н'00800414	reserved	reserved	
н'00800416	DMA0 source addre	ss register (DM0SA)	
н'00800418	reserved	reserved	
H'0080041A	DMA0 destination add	ress register (DM0DA)	
			\hat{a}
н'00800420	DMA1 channel control register (DM1CNT)	DMA1 transfer count regis (DM1TCT)	ter
н'00800422	rese	rved	
н'00800424	rese	rved	
н'00800426	DMA1 source addre	ss register (DM1SA)	
н'00800428	rese	rved	
H'0080042A	DMA1 destination add	ress register (DM1DA)	
\tilde{a}	\sim		$\widehat{}$
н'00800430	DMA2 channel control register (DM2CNT)	DMA2 transfer count registe (DM2TCT)	er
н'00800432	rese	rved	
н'00800434	rese	rved	
н'00800436	DMA2 source addre	ss register (DM2SA)	
н'00800438	rese	prved	
H'0080043A	DMA2 destination add	ress register (DM2DA)	
	Note : Registers in bold line s	should be accessed in halfword	s.

Fig. 9.2.1 Register map related to the DMAC (1/2)

Fig. 9.2.1 Register map related to the DMAC (2/2)

9.2 Registers related to DMAC

9.2.1 DMAn channel control registers (n = 0 to 4)

The DMAn channel control register dedicated to each channel consists of the DMA transfer mode select, the DMA transfer request flag, the DMA request source select, the DMA transfer enable, the DMA transfer size select, and the DMA source/destination address direction select bits.

(1) MDSEL bit (DMAn transfer mode select bit D0; MDSELn)

The MDSEL bit selects the normal mode or the ring buffer mode. If this bit is cleared to 0, the normal mode is selected, and if set to 1, the ring buffer mode selected.

In the ring buffer mode, transfer operation starts at the transfer start address, and after 32 transfers it returns to the start address to repeat the operation. In this operation, the transfer count register of the channel is free-running, and the transfer operation continues until the transfer enable bit (D4 of the DMA channel control register) is cleared to 0 (transfer disabled). No DMA transfer end interrupt request is generated.

(2) TREQF bit (DMAn transfer request flag bit D1; TREQFn)

The TREQF flag is set to 1 if a DMA transfer request is generated, so that the generation of any DMA transfer request is recognized by reading this flag.

If a 0 is written to this flag bit, the DMA transfer request that has been generated is cleared, and if a 1 is written, the value of the bit preceding to the write is maintained.

In the channel for which this flag has already been set to 1, another DMA transfer request cannot be accepted until the channel completes its transfer.

(3) REQSL bits (DMAn request source select bits D2, D3; REQSLn)

The REQSL bits select the DMA request source of each DMAC channel.

(4) TENL bit (DMAn transfer enable bit D4; TENLn)

If the TENL bit is set to 1, DMA transfer is enabled.

(5) TSZSL bit (DMAn transfer size select bit D5; TSZSLn)

The TSZSL bit specifies the number of bits transferred at one DMA transfer operation, i.e. a unit of transfer.

If this bit is cleared to 0, a unit of transfer is 16 bits, and if set to 1, it is 8 bits.

(6) SADSL bit (DMAn source address direction select bit D6; SADSLn)

The SADSL bit selects one of the directions of change of the source address, fixed or incremented.

(7) DADSL bit (DMAn destination address direction select bit D7; DADSLn)

The DADSL bit selects one of the directions of change of the destination address, fixed or incremented.

9.2 Registers related to DMAC

DMA0 channel control register (DM0CNT)

<Address : H'0080 0410>

D0	1	2	3	4	5	6	D7
MDSEL0	TREQF0	RE	QSL0	TENL0	TSZSL0	SADSL0	DADSL0

			<at< th=""><th>reset</th><th>: H'00></th></at<>	reset	: H'00>
D	Bit name	Function	Ini.	R	W
0	MDSEL0	0: Nomal mode	0		
	(DMA0 transfer mode select)	1: Ring buffer mode			
1	TREQF0	0: Not requested	0		
	(DMA0 tansfer request flag)	1: Requested			
2, 3	REQSL0	00: Software start or	0		
	(DMA0 request source select)	DMA2 transfer complete			
		01: A-D conversion complete			
		10: MJT (TIO8_udf)			
		11: MJT (input event bus line 2)			
4	TENLO	0: Transfer disabled	0		
	(DMA0 transfer enable)	1: Transfer enabled			
5	TSZSL0	0: 16 bits	0		
	(DMA0 transfer size select)	1: 8 bits			
6	SADSL0	0: Fixed	0		
	(DMA0 source address direction select)	1: Incremented			
7	DADSL0	0: Fixed	0		
	(DMA0 destination address direction	1: Incremented			
	select)				

W = : Only a write of 0 is valid. If a 1 is written, the value preceding to the write is maintained.

DMAC

9.2 Registers related to DMAC

DMA1 channel control register (DM1CNT)

<Address : H'0080 0420>

D0	1	2	3	4	5	6	D7
MDSEL1	TREQF1	RE	QSL1	TENL1	TSZSL1	SADSL1	DADSL1

			<at r<="" th=""><th>eset :</th><th>H'00></th></at>	eset :	H'00>
D	Bit name	Function	lni.	R	W
0	MDSEL1	0: Nomal mode	0		
	(DMA1 transfer mode select)	1: Ring buffer mode			
1	TREQF1	0: Not requested	0		
	(DMA1 tansfer request flag)	1: Requested			
2, 3	REQSL1	00: Software start	0		
	(DMA1 request source select)	01: MJT (output event bus line 0)			
		10: MJT (TIN13 input signal)			
		11: DMA0 transfer completed			
4	TENL1	0: Transfer disabled	0		
	(DMA1 transfer enable)	1: Transfer enabled			
5	TSZSL1	0: 16 bits	0		
	(DMA1 transfer size select)	1: 8 bits			
6	SADSL1	0: Fixed	0		
	(DMA1 source address direction select)	1: Incremented			
7	DADSL1	0: Fixed	0		
	(DMA1 destination address direction	1: Incremented			
	select)				

W = : Only a write of 0 is valid. If a 1 is written, the value preceding to the write is maintained.

DMA2 channel control register (DM2CNT)

<Address : H'0080 0430>

D0	1	2	3	4	5	6	D7
MDSEL2	TREQF2	RE	REQSL2		TSZSL2	SADSL2	DADSL2

			<at r<="" th=""><th>eset</th><th>: H'00></th></at>	eset	: H'00>
D	Bit name	Function	lni.	R	W
0	MDSEL2	0: Nomal mode	0		
	(DMA2 transfer mode select)	1: Ring buffer mode			
1	TREQF2	0: Not requested	0		
	(DMA2 tansfer request flag)	1: Requested			
2, 3	REQSL2	00: Software start	0		
	(DMA2 request source select)	01: MJT (Output event bus line 1)			
		10: MJT (TIN18 input signal)			
		11: DMA1 transfer complete			
4	TENL2	0: Transfer disabled	0		
	(DMA2 transfer enable)	1: Transfer enabled			
5	TSZSL2	0: 16 bits	0		
	(DMA2 transfer size select)	1: 8 bits			
6	SADSL2	0: Fixed	0		
	(DMA2 source address direction select)	1: Incremented			
7	DADSL2	0: Fixed	0		
	(DMA2 destination address direction	1: Incremented			
	select)				

W = : Only a write of 0 is valid. If a 1 is written, the value preceding to the write is maintained.

DMAC

9.2 Registers related to DMAC

DMA3 channel control register (DM3CNT)

<Address : H'0080 0440>

D0	1	2	3	4	5	6	D7
MDSEL3	TREQF3	RE	QSL3	TENL3	TSZSL3	SADSL3	DADSL3

			<at r<="" th=""><th>eset</th><th>: H'00></th></at>	eset	: H'00>
D	Bit name	Function	lni.	R	W
0	MDSEL3	0: Nomal mode	0		
	(DMA3 transfer mode select)	1: Ring buffer mode			
1	TREQF3	0: Not requested	0		
	(DMA3 tansfer request flag)	1: Requested			
2, 3	REQSL3	00: Software start	0		
	(DMA3 request source select)	01: Serial I/O 0			
		(Transmit buffer empty)			
4		1x: Serial I/O 1 (Receive complete	ed)		
4	TENL3	0: Transfer disabled	0		
	(DMA3 transfer enable)	1: Transfer enabled			
5	TSZSL3	0: 16 bits	0		
	(DMA3 transfer size select)	1: 8 bits			
6	SADSL3	0: Fixed	0		
	(DMA3 source address direction select)	1: Incremented			
7	DADSL3	0: Fixed	0		
	(DMA3 destination address direction	1: Incremented			
	select)				

W = : Only a write of 0 is valid. If a 1 is written, the value preceding to the write is maintained.

DMA4 channel control register (DM4CNT)

<Address : H'0080 0450>

D0	1	2	3	4	5	6	D7
MDSEL4	TREQF4	REC	QSL4	TENL4	TSZSL4	SADSL4	DADSL4

			<at i<="" th=""><th>reset</th><th>: H'00></th></at>	reset	: H'00>					
D	Bit name	Function	lni.	R	W					
0	MDSEL4	0: Nomal mode	0							
	(DMA4 transfer mode select)	1: Ring buffer mode								
1	TREQF4	0: Not requested	0							
	(DMA4 tansfer mode flag)	1: Requested								
2, 3	REQSL4	00: Software start	0							
	(DMA4 request source select)	01: DMA3 transfer complete								
		10: Serial I/O 0 (Receive complet	e)							
		11: MJT (TIN19 input signal)								
4	TENL4	0: Transfer disabled	0							
	(DMA4 transfer enable)	1: Transfer enabled								
5	TSZSL4	0: 16 bits	0							
	(DMA4 transfer size select)	1: 8 bits								
6	SADSL4	0: Fixed	0							
_	(DMA4 source address direction select)	1: Incremented								
7	DADSL4	0: Fixed	0							
	(DMA4 destination address direction	1: Incremented								
	select)									

W = : Only a write of 0 is valid. If a 1 is written, the value preceding to the write is maintained.

DMAC

9.2 Registers related to DMAC

9.2.2	DMAn	so	ftware	reques	t gen	nerate	registe	r (n =	0 to 4	4)						
	DMA0 DMA1 DMA2 DMA3 DMA4	sof sof sof sof	itwear itwear itwear itwear itwear	reques reques reques reques reques	t gen t gen t gen t gen t gen	ierate ierate ierate ierate ierate	register register register register register	· (DM) · (DM) · (DM) · (DM) · (DM)	DSRI) 1SRI) 2SRI) 3SRI) 4SRI)		<# <# <# <#	Addr Addr Addr Addr Addr	ess ess ess ess ess	: H'00 : H'00 : H'00 : H'00 : H'00)80 ()80 ()80 ()80 ()80 ()460>)462>)464>)466>)468>
	I	D0	1 2	2 3	4	56	7 DMn§	8 9 SRI	10	11	12	13	14	D15]	

			<at r<="" th=""><th>eset: Under</th><th>fined></th></at>	eset: Under	fined>
D	Bit name	Function	lni.	R	W
0 to 15	DMnSRI	DMA transfer request generated	?	Inhibited	
	(DMA software request generate)	by writing arbitrary data.			

Note: These registers are accessible with either bytes or halfwords.

The DMAn software request generation register dedicated to each channel is used to generate DMA transfer request with software. If "software start" is selected as the DMA request source (bits D2 and D3 of the DMAn channel control register are set to "00"), a DMA transfer request is generated by writing arbitrary data to this register.

DMSRI bits (DMA software request generation bits; DMnSRI)

If "software start" is selected as the DMA request source, a software DMA transfer request is generated by writing to this register arbitrary data of a halfword (16 bits) or a byte (8 bits) that begins at an even or odd address.

DMA0 DMA1 DMA2 DMA3 DMA4	sourc sourc sourc sourc sourc	e e e e	addre addre addre addre addre	955 955 955 955 955	regis regis regis regis regis	ter ter ter ter ter	(DM03 (DM13 (DM23 (DM33 (DM33 (DM43	SA) SA) SA) SA) SA)			<addr <addr <addr <addr <addr< th=""><th>ess ess ess ess ess</th><th>: H : H : H : H</th><th>'0080 '0080 '0080 '0080 '0080</th><th>041 042 043 044 045</th><th>6> 6> 6> 6></th></addr<></addr </addr </addr </addr 	ess ess ess ess ess	: H : H : H : H	'0080 '0080 '0080 '0080 '0080	041 042 043 044 045	6> 6> 6> 6>
r	1 00	I	2	3	4	5	6	7	8	9	10	11	12	13	14	D15

DMnSA													

<at reset<="" th=""><th>:</th><th>Undefined></th></at>	:	Undefined>
---	---	------------

D	Bit name	Function	lni.	R	W
0 to 15	DMnSA	Specify A16 to A31 of the source address	?		
		(A0 to A15 are fixed at H'0080).			

Note: These registers are accessible with either bytes or halfwords.

Bits D0 and D15 of the DMA source address register dedicated to each channel specify A16 and A31 of the DMA source address of the channel, respectively. Because the register operates as a current register, the value read back is the current one.

When the DMA transfer is ended (i.e. the transfer count register underflows), if the address direction is fixed, the register will maintain the value preceding to DMA transfer; if incremented address, it will go to the final transfer address + 1 (an 8-bit transfer) or the final transfer address + 2 (a 16-bit transfer).

Each DMA source address register should be accessed with a halfword (16 bits) beginning at an even address. If accessed with a byte, the value of the register will be indeterminate.

DMnSA bits (Source addresses A16 to A31)

Any source address of the internal I/Os or the RAM area located in addresses H'0080 0000 to H'0080 FFFF is specified by setting these registers.

The high-order 16 bits of the source address (A0 to A15) are always fixed at H'0080; the low-order 16 bits of the address are specified by the source address register (bits D0 and D15 correspond to A16 and A31 of the source address respectively).
DMAC

9.2 Registers related to DMAC

9.2.4 DMAn destination address register (n = 0 to 4)DMA0 destination address register (DM0DA)<Address : H'0080 041A>DMA1 destination address register (DM1DA)<Address : H'0080 042A>DMA2 destination address register (DM2DA)<Address : H'0080 043A>

DMA3 destination address register (DM3DA) DMA4 destination address register (DM4DA)

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
DMnAD															

<Address : H'0080 044A>

<Address : H'0080 045A>

		<at< th=""><th>reset :</th><th>Und</th><th>defined></th></at<>	reset :	Und	defined>
D	Bit name	Function	Ini.	R	W
0 to 15	DMnDA	Specify A16 to A31 of the destination	?		
		address			
		(A0 to A15 are fixed at H'0080).			

Note: These registers are accessible with either bytes or halfwords.

Bits D0 and D15 of the DMAn destination address register dedicated to each channel specify A16 and A31 of the DMA source address of the channel, respectively. Because the access of this register operates as a current register, the value read back is the current one.

When the DMA transfer is ended (i.e. the transfer count register underflows), if the address direction is fixed, the register will maintain the value preceding to DMA transfer; if incremented address, it will go to the final transfer address + 1 (an 8-bit transfer) or the final transfer address + 2 (a 16-bit transfer).

Each DMAn destination address register should be accessed with a halfword (16 bits) beginning at an even address. If accessed with a byte, the value of the register will be indeterminate.

DMnDA bits (Destination addresses A16 to A31)

Any source address of the internal I/Os or the RAM area located in addresses H'0080 0000 to H'0080 FFFF is specified by setting these registers.

The high-order 16 bits of the destination address (A0 to A15) are always fixed at H'0080; the loworder 16 bits of the address are specified by the destination address register (bits D0 and D15 correspond to A16 and A31 of the destination address respectively).

9.2.5 DMAn transfer count register (n = 0 to 4)

D 8 t

DMA0	transfer count register (D	ОМОТСТ)	<address< th=""><th>: H'0080</th><th>0411></th></address<>	: H'0080	0411>
DMA1	transfer count register (D	OM1TCT)	<address< td=""><td>: H'0080</td><td>0421></td></address<>	: H'0080	0421>
DMA2	transfer count register (D	DM2TCT)	<address< td=""><td>: H'0080</td><td>0431></td></address<>	: H'0080	0431>
DMA3	transfer count register (D	ОМЗТСТ)	<address< td=""><td>: H'0080</td><td>0441></td></address<>	: H'0080	0441>
DMA4	transfer count register (D	DM4TCT)	<address< td=""><td>: H'0080</td><td>0451></td></address<>	: H'0080	0451>

D8	9	10	11	12	13	14	D15
DMnTCT							

			<at :<="" reset="" th=""><th>Unde</th><th>fined</th><th>></th></at>	Unde	fined	>
	Bit name	Function	lni.	R	W	
o 15	DMnTCT	Number of DMA transfers	?			
		(lanored in the ring buffer mode).				

Note: These registers are accessible with either bytes or halfwords.

The DMAn transfer count register dedicated to each channel specifies the number of transfers for the channel; however, the value in this register is ignored in the ring buffer mode.

The number of transfers is determined by the value of the transfer count register + 1. Because the register operates as a current register, the value read back is the current one. (However, the value readouting by cycle immediately after transferring is the count register value before transferring.) When transfer is complete, the register underflows (read back as H'FF).

If there are channels connected in cascade, they are started sequentially upon end of each one DMAn transfer (a byte or a halfword).

DMAC

9.2 Registers related to DMAC

9.2.6 DMA interrupt request status register (DMITST)

			< at	rese	: H'00>
D	Bit name	Function	lni.	R	W
0 to 2	Not assigned.		0	0	-
3	DMITST4	0: Not requested	0		
	(DMA4 interrupt request status)	1: Requested			
4	DMITST3	0: Not requested	0		
	(DMA3 interrupt request status)	1: Requested			
5	DMITST2	0: Not requested	0		
	(DMA2 interrupt request status)	1: Requested			
6	DMITST1	0: Not requested	0		
	(DMA1 interrupt request status)	1: Requested			
7	DMITST0	0: Not requested	0		
	(DMA0 interrupt request status)	1: Requested			

W = - : Write invalid

11100

W = : Only a write of 0 is valid. If a 1 is written, the value preceding to the write is maintained.

The DMA interrupt request status register indicates the state of interrupt request in each channel. If the DMAn interrupt request status bit is set to 1, a DMA interrupt is generated in channel "n".

DMITST bits (DMA interrupt request status bits; DMITSTn)

Because each DMA interrupt request status bit is set to 1 with hardware, only a write of 0 for clearing is performed with software. An interrupt request status bit set to 1 maintains its state until a 0 is written. (Note that even if a 0 is written to an interrupt request bit of the DMA interrupt control register in the interrupt controller, DMAn interrupt request status bits are not cleared.)

If any bit of the DMAn interrupt request status register is to be cleared with software, write 0s to the <u>1s to the other bits</u>, and these bits will retain the preceding value because the bits to which 1s have been written are not affected by the writes with software.

9.2.7 DMA interrupt mask register (DMITMK)

<Address : H'0080 0401>

			< at	reset	: H'00>
D	Bit name	Function	Ini.	R	W
8 to 10	Not assigned.		0	0	-
11	DMITMK4	0: Interrupt request enabled	0		
	(DMA4 interrupt request mask)	1: Interrupt request masked			
12	DMITMK3	0: Interrupt request enabled	0		
	(DMA3 interrupt request mask)	1: Interrupt request masked			
13	DMITMK2	0: Interrupt request enabled	0		
	(DMA2 interrupt request mask)	1: Interrupt request masked			
14	DMITMK1	0: Interrupt request enabled	0		
	(DMA1 interrupt request mask)	1: Interrupt request masked			
15	DMITMK0	0: Interrupt request enabled	0		
	(DMA0 interrupt request mask)	1: Interrupt request masked			

W = - : Write invalid

The DMA interrupt mask register is used to mask interrupt requests of each DMA channel.

DMITMK bits (DMA interrupt request mask bits; DMITMKn)

If the DMAn interrupt mask bit is set to 1, the DMAn interrupt request is masked. However, if an interrupt request is generated, the DMAn interrupt request status bit of the DMA interrupt request status register is set to 1 regardless of the content of this register.

9.3.1 DMA request sources

DMA can request DMA transfer from several sources for each channel (0 to 4 channel). Request sources of DMA transfer include starts by the internal peripheral I/Os, by software, and by the transfer end in one of the other DMA channels (in the cascade mode).

In the cascade mode, upon end of one DMA transfer (a byte or a halfword) in a selected channel, a DMA transfer in the channel connected to it in cascade is started.

Any DMA request source of a channel can be selected by request source select bits D2 and D3 of the dedicated DMAn channel control register. The DMA request sources of five channels are explained in Table 9.3.1 to Table 9.3.5.

REQSL0	DMA request source	DMA request generation timing
0 0	Software start or	Arbitrary data written to DMA0 software request
	DMA2 transfer completed	generation register (software start), or DMA2 transfer
		completed (in the cascade mode)
0 1	A-D conversion completed	A-D conversion completed
10	MJT (TIO8_udf)	TIO8 underflow of MJT generated
1 1	MJT (Input event bus line 2)	Signal inputted to input event bus line 2 of MJT.

Table 9.3.1 DMA request sources of DMA0 and their generation timings

Table 9.3.2 DMA request sources of DMA1 and their generation timings

REQSL1	DMA request source	DMA request generation timing
0 0	Software start	Arbitrary data written to DMA1 software request
		generation register
0 1	MJT (Output event bus line 0)	Signal inputted output event bus line 0 of MJT
1 0	MJT (TIN13 input signal)	TIN13 input signal generated
1 1	DMA0 transfer completed	DMA0 transfer completed (in the cascade mode)

REQSL2	DMA request source	DMA request generation timing
0 0	Software start	Arbitrary data written to DMA2 software request
		generation register
0 1	MJT (Output event bus line 1)	Signal inputted to output event bus line 1 of MJT
1 0	MJT (TIN18 input signal)	Signal inputted to TIN18 input signal of MJT.
1 1	DMA1 transfer completed	DMA1 transfer completed (in the cascade mode)

Table 9.3.3 DMA request sources of DMA2 and their generation timings

Table 9.3.4 DMA request sources of DMA3 and their generation timings

REQSL3	DMA request source	DMA request generation timing
0 0	Software start	Arbitrary data written to DMA3 software request
		generation register
0 1	Serial I/O 0 (Transmit buffer empty)	Serial I/O 0 transmit buffer emptied
1 X	Serial I/O 1 (Receive complete)	Serial I/O 1 reception completed

Table 9.3.5 DMA request sources of DMA4 and their generation timings

REQSL4	DMA request source	DMA request generation timing
0 0	Software start	Arbitrary data written to DMA4 software request
		generation register
01	DMA3 transfer completed	DMA3 transfer completed (in the cascade mode)
1 0	Serial I/O 0 (Receive complete)	Serial I/O 0 reception completed
1 1	MJT (TIN19 input signal)	Signal inputted to TIN19 input signal of MJT.

9.3.2 Sequences of DMA transfer processing

A control sequence of DMA transfer by using DMA channel 0 is shown Figure 9.3.1.

Fig. 9.3.1 Processing of DMA transfer (example)

9.3.3 Start of DMA

Any DMA request source of a channel can be selected by setting request source select bits D2 and D3 of the dedicated DMAn channel control register, and DMA transfer is enabled by setting transfer enable bit D4 of the register. When the transfer enable bit is set to 1, and the selected request source is valid, the DMA transfer is started.

9.3.4 Channel priority levels

Each channel has its fixed priority level as shown below, where channel 0 has the highest priority.

Channel 0 > Channel 1 > Channel 2 > Channel 3 > Channel 4

The channel priority is decided after every one transfer, and the channel with the highest priority level at that time is selected.

9.3.5 Holding and relinquishing of internal bus

The holding and relinquishing of the M32150F4TFP internal bus are performed with the single transfer DMA method in each channel. In the single transfer DMA, the DMAC holds the internal bus upon acceptance of a DMA transfer request and, after the execution of one DMA transfer (1 read-cycle + 1 write-cycle), relinquishes the bus to the CPU. The operation of the single DMA transfer is explained in Figure 9.3.2.

Fig. 9.3.2 Holding and relinquishing of internal bus

9.3.6 Unit of transfer

The number of bits transferred by one DMA transfer (8 bits or 16 bits) in each channel is determined by setting transfer size select bit D5 of the dedicated DMAn channel control register.

9.3.7 Number of transfers

The number of transfers in each channel is determined by setting the dedicated DMA transfer count register with a maximum value of 256. After every one transfer, the transfer count register is decremented by one.

In the ring buffer mode, the DMAn transfer count register is free-running, and the register value is ignored.

9.3.8 Address space

The address space available as sources or destinations in DMA transfer is a 64K-byte area of the internal peripheral I/Os and RAM (H'0080 0000 to H'0080 FFFF). A source or destination address of each channel is specified by setting the dedicated DMAn source or destination address register. Addresses H'0080 4000 to H'0080 FFFF are ghosts, which should not be designated as the transfer addresses of DMAC.

9.3.9 Transfer operation

(1) Dual address transfer

Data is transferred with two bus cycles, i.e. source read access and destination write access, regardless of a unit of transfer (data to be transferred is loaded once into the temporary register in the DMAC).

(2) Bus protocol and bus timing

Because the bus interface is common to the DMAC and the CPU, the bus protocol and bus timings of the DMAC are the same as those used at access from the CPU.

(3) Transfer rate

The maximum transfer rate is given by the following equation.

Maximum transfer rate [bytes/s] = 2 bytes × $\frac{1}{1 / f (BCLK) \times 3 cycles}$

(4) Address count directions and address changes

The count direction of a source or destination address (address fixed or address incremented) of each channel is specified by setting source address direction select bit D6 or destination address direction select bit D7 of the dedicated DMA channel control register.

If a unit of transfer is 16 bits, the address is incremented by 2, and if 8 bits, it is incremented by 1.

Address count direction	Unit of transfer	Address change at one DMA transfer
Fixed address	8 bits	0
	16 bits	0
Incremented address	8 bits	+1
	16 bits	+2

Table 9.3.6 Address count directions and address changes

(5) Transfer count value

A transfer count value is decremented by 1 regardless of a unit of transfer (8 bits or 16 bits).

(6) Positions of transfer byte

If a unit of transfer is 8 bits, the LSB of each source or destination address register is effective for the position of the transfer byte (therefore, transfers from an even to an odd address and from an odd to an even address are possible as well as those from an even to another even address and from an odd to another odd address).

If a unit of transfer is 16 bits, the LSB of each address register (bit D15 of the address register) is ignored, and halfwords that are always aligned on the 16-bit bus are transferred. The effective positions of transfer bytes are shown in Figure 9.3.3.

(7) Ring buffer mode

If the ring buffer mode is selected, transfer operation starts at the transfer start address, and after 32 transfers it returns to the start address to repeat the operation as far as the low-order 5 bits of the start address are located at B'00000.

The address increments in the ring buffer mode is as follows:

① 8-bit transfer size

The high-order 27 bits of the transfer start address are fixed, and the low-order 5 bits are incremented by 1. When the low-order 5 bits reach B'11111, these bits wrap around to the start address, i.e. B'00000, at the next increment.

2 16-bit transfer size

The high-order 26 bits of the transfer start address are fixed, and the low-order 6 bits are incremented by 2. When the low-order 6 bits reach B'111110, these bits wrap around to the start address, i.e. B'000000, at the next increment.

If the source address is specified to be incremented, it returns to the start address, and if the destination address specified, it returns, too.

If both addresses are specified to be incremented, both of them return to the start addresses as far as each start address low-order 5 bits is B'00000 in its initial value.

Each transfer count register is ignored in the ring buffer mode. Also, these registers are free-running after the start of the DMA operation to continue transfer until the transfer enable bit of the corresponding DMA channel control register is cleared to 0 (transfer disabled).

Number of	transfer a	lddress	Number of	transfer a	address
transfers			transfers		
1	н'0080	1000	1	н'0080	1000
2	н'0080	1001	2	н'0080	1002
3	н'0080	1002	3	н'0080	1004
S	S		S	S	
31	н'0080	101E	31	н'0080	103C
32	н'0080	101F	32	н'0080	103E
1	н'0080	1000	1	н'0080	1000
2	н'0080	1001	2	н'0080	1002
\$	{		S	\$	

9.3.10 DMA end and interrupts

In the normal mode, the DMA transfer of a channel ends at an underflow of the dedicated transfer count register. When a transfer is ended, the transfer enable bit is cleared to 0, causing any further transfer to be disabled. Upon end of a transfer, an interrupt is generated; however, no interrupt occurs in the channel whose interrupt request is masked by the DMA mask register.

In the ring buffer mode, each transfer count register is free-running to continue transfer until the transfer enable bit of the corresponding DMA channel control register is cleared to 0 (transfer disabled). As a result, any DMA transfer end interrupt is not generated. In this mode a transfer end by clearing its transfer enable bit does not generate any DMA transfer end interrupt, too.

9.3.11 States of registers after DMA transfer end

When a DMA transfer ends, the corresponding source and destination address registers have conditions as follows.

(1) in the fixed address mode

•The values preceding to the DMA transfer is remained.

(2) in the incremented address mode

•The final transfer address + 1 (at an 8-bit transfer)

•The final transfer address + 2 (at a 16-bit transfer)

Also, the transfer count register remains underflowing (H'FF) after a DMA transfer ends. Therefore, reset the transfer count register to perform the next DMA transfer except for transferring 256(H'FF) times.

9.4 Notes on use of DMAC

•Writes to registers related to DMA

Because DMA writes and reads data via the internal bus, the registers related to DMA must be written after reset or during the transfer disable state (the corresponding transfer enable bits are 0s). During the transfer enable state, these registers must not be written to prevent from unstable operations except the DMA transfer enable bits, the transfer request flags, and the DMAn transfer count registers protected by hardware.

"Write" and "Don't write" to these registers are shown in Table 9.4.1.

State	Transfer enable	Transfer request	Other DMA-rel	ated
	bits	flags	registers	
Transfer enable state			×	
Transfer disable state				
			: "Write"	x: "Don't write"

Table 9.4.1 "Write" and "Don't write" to registers related to DMA

Note that even the registers allowed to be written exceptionally at the transfer enable state could be written under the following conditions:

① Transfer enable bit or transfer request flag of each DMAn channel control register When writing these bits, write into all of the other bits of the register the same data that they contained prior to the writes, simultaneously. Only a write of 0 is valid for each transfer request flag.

② DMA transfer count registers

Written data is ignored because these registers are protected by hardware in the transfer enable state.

③ Rewriting of DMAn source and destination addresses of the different channel using DMA transfer

In this case, the DMA-related registers can be accessed during the DMA enable state without trouble. However, the DMA transfer to the DMA-related register in the same channel is inhibited.

• Access to registers related to DMA using DMA transfer

When DMA-related registers are accessed using DMA transfer (for example, reloaded with the initial value by DMA transfer), a write to the register in the same channel as of the transfer is inhibited (the register operation after the write can not be guaranteed).

Between different channels, it is possible to rewrite any DMA-related register by DMA transfer (for example, rewriting the DMAn of channel 1 source and destination address registers using channel 0).

• On DMA interrupt request status register

When any bit of the DMA interrupt request status register is to be cleared, write 1s to all of the other bits. The bits to which 1s have been written retain the contents in the state preceding to the writes.

CHAPTER 10 MULTI-JUNCTION TIMERS

10.1 Summary of Multi-Junction Timers
10.2 Units Common to Timers
10.3 TOP (16-Bit Timers Related to Output)
10.4 TIO (16-Bit Timers Related to Input/Output)
10.5 TMS (16-Bit Timers Related To Input)
10.6 TML (32-Bit Timers Related To Input)

10.1 Summary of multi-junction timers

10.1 Summary of multi-junction timers

The multi-junction timers (hereafter called MJTs) are provided with an input and an output event bus, with which they can be internally connected each other as well as used as individual timers. This function provides flexible timer configuration and capability for various applications. Because the timers have many junctions with internal event buses, they are called the multi-junction timers.

There are four types of timers with a total of 33 channels in MJTs.

Table 10.	1.1 Summary of MJTs		
Name	Туре	Number of	Description
		channels	
ТОР	Related to output	11	3 output modes selectable with software
(Timer	16-bit timers		< With adjust function >
Output)	(Down-counters)		 Single-shot output mode
			 Delayed single-shot output mode
			< Without adjust function >
			 Continuous output mode
TIO	Related to input/output	10	3 input modes and 4 output modes
(Timer	16-bit timers		selectable with software
Input	(Down-counters)		< Input modes >
Output)			 Measure clear input mode
			 Measure free-run input mode
			 Noise processing input mode
			< Output modes without adjust function >
			 PWM output mode
			 Single-shot output mode
			 Delayed single-shot output mode
			 Continuous output mode
TMS	Related to input	8	16-bit input measure timers
(Timer	16-bit timers		
Measure	(Up-counters)		
Small)			
TML	Related to input	4	32-bit input measure timers
(Timer	32-bit timer		
Measure	(Up-counters)		
Large)			

10.1 Summary of multi-junction timers

Signal	MJT interrupt	Interrupt controller	Request input	
name	request sources	(ICU) input	type	
IRQ12	TIN3 to TIN6	MJT input interrupt 4	4	
IRQ11	TIN20 to TIN23	MJT input interrupt 3	4	
IRQ10	TIN12 to TIN19	MJT input interrupt 2	8	
IRQ9	TIN0 to TIN2	MJT input interrupt 1	3	
IRO8	TIN7 to TIN11	MJT input interrupt 0	5	
IRQ7	TMS0, TMS1	MJT output interrupt 7	2	
IRQ6	TOP8, TOP9	MJT output interrupt 6	2	
IRQ5	TOP10	MJT output interrupt 5	1	
IRQ4	TIO4 to TIO7	MJT output interrupt 4	4	
IRQ3	TIO8, TIO9	MJT output interrupt 3	2	
IRQ2	TOP0 to TOP5	MJT output interrupt 2	6	
IRQ1	TOP6, TOP7	MJT output interrupt 1	2	
IRQ0	TIO0 to TIO3	MJT output interrupt 0	4	

Table 10.1.2 Interrupt generation function of MJTs

Table 10.1.3 DMA transfer request generation functions of MJTs

Signal name	DMA transfer request source	DMAC input channel
DRQ0	TIO8 underflow	Channel 0
DRQ1	Input event bus 2	Channel 0
DRQ2	Output event bus 0	Channel 1
DRQ3	TIN13 input	Channel 1
DRQ4	Output event bus 1	Channel 2
DRQ5	TIN18 input	Channel 2
DRQ6	TIN19 input	Channel 4

Table 10.1.4 A-D conversion start-up request function of MJTs

Signal name	A-D conversion	A-D converter
	start-up request source	
ADTRG	output event bus 3	Can be input to the A-D conversion start-up trigger

10.1 Summary of multi-junction timers

Fig. 10.1.1 MJT block diagram (1/2)

10.1 Summary of multi-junction timers

10.2 Units common to timers

10.2 Units common to timers

The units common to the timers consist of the following blocks:

- Prescalers
- Clock bus/input and output event bus control unit
- Input processing control unit
- Output flip-flop control unit
- Interrupt control unit

10.2.1 Register map related to units common to the timers

The register map related to units common to the timers is shown in Figure 10.2.1.

10.2 Units common to timers

10.2 Units common to timers

10.2.2 Prescalers

Prescalers PRS0 to PRS2 are 8-bit counters that divide <u>one-half the clock frequency (12.5 MHz at 25 MHz</u> <u>internal operation</u>) to supply the clocks necessary to timers TOP, TIO, and TMS except TML. The counter registers of three prescalers can be set to any value of H'00 to H'FF. The clock divide ratio of each prescaler is given by the following equation.

<at reset : undefined>

D	Bit name	Function	R	W
0 to 7	PRS0, PRS2	Set the clock divide ratio of the prescaler		

Prescaler register(PRS1)

<Address : H'0080 0203>

D8	9	10	11	12	13	14	D15
			PRS	1			

<at reset : undefined>

D	Bit name	Function	R	W
8 to 15	PRS1	Set the clock divide ratio of the prescaler		

10.2 Units common to timers

10.2.3 Clock bus/input and output event bus control unit

(1) Clock bus

The clock bus consists of four clock bus lines 0 to 3 for supplying the clock to each timer. Each timer can use this clock bus signal as a clock input signal.

The signals that can be input to the clock bus are shown in Table 10.2.1.

Clock bus	Signal to be input
3	TCLK0 input
2	PSC2 or TCLK3 input
1	PSC1
0	PSC0

Table 10.2.1 Signals inputted to clock bus lines

(2) Input event bus

The input event bus consists of four input event bus lines 0 to 3 for supplying the count enable signal or measure capture signal to each timer. Each timer can use this input enable bus signal as an enable or capture input signal.

The signals that can be input to the input event bus are shown in Table 10.2.2.

Table 10.2.2 Orginals inputted to input event bus

Input event bus	Signal to be input
3	TIN3 input, output event bus 2 or TIO7 underflow signal
2	TIN0 input, TIN2 input or TIN4 input
1	TIN5 input or TIO6 underflow signal
0	TIN6 input or TIO5 underflow signal

10.2 Units common to timers

(3) Output event bus

The output event bus consists of four output event bus lines 0 to 3, to which the underflow signal of each timer is input. The signals on the output event bus are outputted to output flip-flops. In addition, output event bus line 3 can be connected to the A-D converter, bus line 0 to DMAC channel 2, and bus line 1 to DMAC channel 4. Output event bus line 2 can also be connected to input event bus line 3.

The signals that can be connected to the output event bus are shown in Table 10.2.3.

Table 10.2.3 Signals inputted to output event bus	lines	
---	-------	--

Output event bus	Signal to be inputted (see note)
3	TOP8, TIO3, TIO4, TIO8 underflow signal
2	TOP9 or TIO2 underflow signal
1	TOP7 or TIO1 underflow signal
0	TOP6 or TIO0 underflow signal

Note: For the destinations of output event bus signals, see Figure 10.1.1 "MJT block diagram".

The signals from each timer to the output event bus (and the underflow signals from TIO5, TIO6 to the input event bus) are generated at the timings shown in Table 10.2.4 (note that these timings are different from those of output signals from timers to their flip-flops).

Timer	Mode	Signal generation timing to output event bus
ТОР	Single-shot output mode	At counter underflow
	Delayed single-shot output mode	At counter underflow
	Continuous output mode	At counter underflow
TIO (see note)	Measure clear input mode	At counter underflow
	Measure free-run input mode	At counter underflow
	Noise processing input mode	At counter underflow
	PWM output mode	At counter underflow
	Single-shot output mode	At counter underflow
	Delayed single-shot output mode	At counter underflow
	Continuous output mode	At counter underflow
TMS	(16-bit measure inputs)	Without signal generation function
TML	(32-bit measure inputs)	Without signal generation function

Table 10.2.4 Signal generation timings from timers to output event bus

Note: TIO5 and TIO6 output underflow signals to the input event bus.

10.2 Units common to timers

Fig. 10.2.2 Configuration of clock bus, and input and output event buses

10.2 Units common to timers

The clock bus/input and output event bus control unit is provided with the following registers:

- Clock bus and input event bus control register (CKIEBCR)
- Output event bus control register (OEBCR)

Clock bus and input event bus control register (CLKIEBCR) Address : H'0080 0201>

<at reset : H'00>

D	Bit name	Function	R	W
8, 9	IEB3S (Input event bus line 3 input select)	0x: External input 3 (TIN3) selected 10: Output event bus line 2 selected 11: TIO7 output selected		
10, 11	IEB2S (Input event bus line 2 input select)	00: External input 0 (TIN0) selected 01: External input 2 (TIN2) selected 1x: External input 4 (TIN4) selected		
12	IEB1S (Input event bus line 1 input select)	0: External input 5 (TIN5) selected 1: TIO6 output selected		
13	IEBOS (Input event bus line 0 input select)	0: External input 6 (TIN6) selected 1: TIO5 output selected		
14	Not assigned.		0	_
15	CKB2S (Clock bus line 2 input select)	0: Prescaler 2 selected 1: External clock 3 (TCLK3) selected		

W = -: Write invalid

CKIEBCR is the register that specifies the clock source supplied to the clock bus (external input or prescaler output) and the count enable/capture signal supplied to the input event bus (external inputs or outputs event bus line).

10.2 Units common to timers

	Output event bus control register (OEBCR)		<address 0205="" :="" h'0080=""></address>									
		D8	9	10	11	12	13	14	D15			
		OE	B3S		OEB2S		OEB1S		OEB0S			
										<at res<="" th=""><th>et:H'</th><th>00></th></at>	et:H'	00>
D	Bit na	ime			Function					R	W	
8, 9	OEB3 (Outp input	S ut event select)	bus line	9 3	00: TOP8 01: TIO3 10: TIO4 11: TIO8	output output output output output	selected selected selected selected					
10	Not a	ssigned.								0	_	
11	OEB2 (Outp input	S ut event select)	bus line	2	0: TOP9 1: TIO2 c	output output s	selected elected					
12	Not a	ssigned.								0	_	
13	OEB1 (Outp input	S ut event select)	bus line	9 1	0: TOP7 1: TIO1 c	output output s	selected elected					
14	Not a	ssigned.								0	_	
15	OEB0 (Outp input	S ut event select)	bus line	9 0	0: TOP5 1: TIO0 c	output output s	selected elected					

W = -: Write invalid

OEBCR is the register that determines the underflow signal of which timer (TOP or TIO) to be supplied to the output event bus.

10.2 Units common to timers

10.2.4 Input processing control unit

The input processing control unit performs the input processing of the TCLK and the TIN signals. The TCLK input processing unit specifies the signal source of each TCLK input and, if the external input is selected, at which edge (rising, falling, or double edges) or which level ("H" or "L") to generate the clock signal to be supplied to the internal clock bus.

The TIN input processing unit selects at which edge (rising, falling, or double edges) or which level (HIGH or LOW) of each TIN input to generate the enable/measure/count source signal to each timer or the signal to each event bus line.

The input processing control registers are as follows:

- TCLK input processing control register (TCLKCR) (see note)
- TIN input processing control register 0 (TINCR0) (see note)
- TIN input processing control register 1 (TINCR1) (see note)
- TIN input processing control register 2 (TINCR2) (see note)
- TIN input processing control register 3 (TINCR3) (see note)
- TIN input processing control register 4 (TINCR4)

NOTE

TCLKCR, TINCR0 to TINCR3 should be accessed in halfwords.

10.2 Units common to timers

TCLK input processing control register (TCLKCR)

<Address : H'0080 0210>

			<at :<="" reset="" th=""><th>H'0000></th></at>	H'0000>
D	Bit name	Function	R	W
0, 1	Not assigned.		0	_
2, 3	TCLK3S	00: internal clock		
	(TCLK3 input processing select)	01: Rising edge		
		10: Falling edge		
		11: Double edges		
4	Not assigned.		0	_
5 to 7	TCLK2S	000: Input invalidated		
	(TCLK2 input processing select)	001: Rising edge		
		010: Falling edge		
		011: Double edges		
		10x: L level		
		11x: H level		
8	Not assigned.		0	_
9 to 11	TCLK1S	000: Input invalidated		
4 5 to 7 8 9 to 11 12, 13 14, 15	(TCLK1 input processing select)	001: Rising edge		
		010: Falling edge		
		011: Double edges		
		10x: L level		
		11x: H level		
12, 13	Not assigned.		0	_
14, 15	TCLK0S	00: Internal clock		
	(TCLK0 input processing select)	01: Rising edge		
		10: Falling edge		
		11: Double edges		

W= - :write invalid

10.2 Units common to timers

TI	N input processing control regi	ster 0 (TINCR0)	<ad< th=""><th>dress:H</th><th colspan="5">H'0080 0212></th></ad<>	dress:H	H'0080 0212>				
	D0 1 2 3 4 5 6	7 8 9	10 11	12 13	14 D15				
	TIN4S TIN	J3S	TIN2S	TIN1S	TIN0S				
					<a< td=""><td>t reset :</td><td>H'0000></td></a<>	t reset :	H'0000>		
D	Bit name	Function				R	W		
0	Not assigned.					0	_		
1 to 3	TIN4S	000: Input in	validated						
	(TIN4 input processing select)	001: Rising e	edge						
		010: Falling o	edge						
		011: Double	edge						
		10x: L level							
		11x: H level							
4	Not assigned.					0	_		
5 to 7	TIN3S	000: Input in	validated						
	(TIN3 input processing select)	001: Rising e	edge						
		010: Falling o	edge						
		011: Double	edge						
		10x: L level							
		11x: H level							
<u>8, 9</u>	Not assigned.					0	_		
10, 11	TIN2S	00: Input inva	alidated						
	(TIN2 input processing select)	01: Rising ed	ige						
		10: Falling e	dge						
40.40			age						
12, 13	(TIN15 (TIN11 input processing coloct)	00: Input Inva							
	(The input processing select)	10: Falling of	iye dao						
		10. Failing et	uye dao						
1/ 15	TINOS		uye						
יד, יט	(TIN1 input processing select)	01: Rising or	Incateu						
	(That input processing select)	10: Falling et	dae						
		11: Double e	dae						

Note : This register should be accessed in a halfword.

W = - : write invalid

10.2 Units Common to Timers

TIN input processing control register 1 (TINCR1)

<Address : H'0080 0214>

			<at reset<="" th=""><th>: H'0000></th></at>	: H'0000>
D	Bit name	Function	R	W
0	Not assigned.		0	_
1 to 3	TIN8S	000: Input invalidated		
	(TIN8 input processing select)	001: Rising edge		
		010: Falling edge		
		011: Double edge		
		10x: L level		
		11x: H level		
4	Not assigned.		0	_
5 to 7	TIN7S	000: Input invalidated		
	(TIN7 input processing select)	001: Rising edge		
		010: Falling edge		
		011: Double edge		
		10x: L level		
		11x: H level		
8	Not assigned.		0	_
9 to 11	TIN6S	000: Input invalidated		
	(TIN6 input processing select)	001: Rising edge		
		010: Falling edge		
		011: Double edge		
		10x: L level		
		11x: H level		
12	Not assigned.		0	_
13 to 15	TIN5S	000: Input invalidated		
	(TIN5 input processing select)	001: Rising edge		
		010: Falling edge		
		011: Double edge		
		10x: L level		
		11x: H level		

W = - : write invalid

10.2 Units common to timers

ТІМ	I input processing control registe	er 2 (TINCR2) <ado< th=""><th>dress : H'0080 0216></th><th></th></ado<>	dress : H'0080 0216>	
	D0 1 2 3 4 5 6	7 8 9 10 11	12 13 14 D15	
	TIN115	S TIN10S	TIN9S	
			<at res<="" th=""><th>set:H'0000></th></at>	set:H'0000>
D	Bit name	Function		R W
0 to 4	Not assigned.			0 –
5 to 7	TIN11S	000: Input invalidated		
	(TIN11 input processing select)	001: Rising edge		
		010: Falling edge		
		011: Double edge		
		10x: L level		
		11x: H level		
8	Not assigned.			0 –
9 to 11	TIN10S	000: Input invalidated		
	(TIN10 input processing select)	001: Rising edge		
		010: Falling edge		
		011: Double edge		
		10x: L level		
		11x: H level		
12	Not assigned.			0 –
13 to 15	TIN9S	000: Input invalidated		
	(TIN9 input processing select)	001: Rising edge		
		010: Falling edge		
		011: Double edge		
		10x: L level		
		11x: H level	١٨/	write involid
			vv = -	

10.2 Units common to timers

TIN input processing control register 3 (TINCR3)

<Address : H'0080 0218>

D0 1	2 3	4 5	6 7	8 9	10 11	12 13	14 D15
TIN19S	TIN18S	TIN17S	TIN16S	TIN15S	TIN14S	TIN13S	TIN12S

<at reset : H'0000>

D	Bit name	Function	R	W
0, 1	TIN19S (TIN19 input processing select)	00: Input invalidated		
		_01: Rising edge		
2, 3	TIN18S (TIN18 input processing select)	10: Falling edge		
		_11: Double edge		
4, 5	TIN17S (TIN17 input processing select)			
		_		
6, 7	TIN16S (TIN16 input processing select)			
		_		
8, 9	TIN15S (TIN15 input processing select)			
		_		
10, 11	TIN14S (TIN14 input processing select)			
		_		
12, 13	TIN13S (TIN13 input processing select)			
		_		
14, 15	TIN12S (TIN12 input processing select)			

10.2 Units common to timers

TIN input control register 4 (TINCR4) <Address : H'0080 021B>

D8	9	10	11	12	13	14	D15
TIN	23S	TIN2	22S	TIN	21S	TIN	120S

<at reset : H'00>

D	Bit name	Function	R	W
8, 9	TIN23S (TIN23 input processing select)	00: Input invalidated		
		01: Rising edge		
10, 11	TIN22S (TIN22 input processing select)	10: Falling edge		
		11: Double edge		
12, 13	TIN21S (TIN21 input processing select)			
14, 15	TIN20S (TIN20 input processing select)	-		

10.2 Units common to timers

10.2.5 Output flip-flop control unit

The output flip-flop control unit controls the flip-flops (F/Fs) provided for the output of each timer. The output flip-flop control registers are as follows:

- F/F source select register 0 (FFS0)
- F/F source select register 1 (FFS1)
- F/F protect register 0 (FFP0)
- F/F protect register 1 (FFP1)
- F/F data register 0 (FFD0)
- F/F data register 1 (FFD1)

The control signals from each timer to its output flip-flop are generated at the timings shown in Table 10.2.5 (note that these timings are different from those of output signals to the output event bus).

Timer	Mode	Signal generation timing to output event bus			
ТОР	Single-shot output mode	Signal generation timing to output event bus At counter enable and counter underflow At counter enable and counter underflow At counter enable and counter underflow At counter underflow At counter enable and counter underflow At counter underflow At counter underflow At counter underflow At counter enable and counter underflow At counter underflow Mithout signal generation function			
	Delayed single-shot output mode	At counter underflow			
	Continuous output mode	At counter enable and counter underflow			
τιο	Measure clear input mode	At counter underflow			
	Measure free-run input mode	At counter underflow			
	Noise processing input mode	At counter underflow			
	PWM output mode	At counter enable and counter underflow			
	Single-shot output mode	At counter enable and counter underflow			
	Delayed single-shot output mode	At counter underflow			
	Continuous output mode	At counter enable and counter underflow			
TMS	(16-bit measure inputs)	Without signal generation function			
TML	(32-bit measure inputs)	Without signal generation function			

Table 10.2.5 Signal generation timings from timers to output flip flop

10.2 Units common to timers

F/F source select register 0 (FFS0)

<Address : H'0080 0220>

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
		1	FF15	FF14	FF13	FF12	FF11	FF	10	FI	F9	F	F8	FF7	FF6

			<at r<="" th=""><th>eset :</th><th>H'0000></th></at>	eset :	H'0000>
D	Bit name	Function		R	W
0 to 2	Not assigned.			0	_
3	FF15 (F/F15 source select)	0: TIO4 output			
		1: Output event bus line 0			
4	FF14 (F/F14 source select)	0: TIO3 output			
		1: Output event bus line 0			
5	FF13 (F/F13 source select)	0: TIO2 output			
		1: Output event bus line 3			
6	FF12 (F/F12 source select)	0: TIO1 output			
		1: Output event bus line 2			
7	FF11 (F/F11 source select)	0: TIO0 output			
		1: Output event bus line 1			
8, 9	FF10 (F/F10 source select)	0x: TOP10 output			
		10: Output event bus line 0			
		11: Output event bus line 1			
10, 11	FF9 (F/F9 source select)	0x: TOP9 output			
		10: Output event bus line 0			
		11: Output event bus line 1			
12, 13	FF8 (F/F8 source select)	00: TOP8 output			
		01: Output event bus line 0			
		10: Output event bus line 1			
		11: Output event bus line 2			
14	FF7 (F/F7 source select)	0: TOP7 output			
		1: Output event bus line 0			
15	FF6 (F/F6 source select)	0: TOP6 output			
		1: Output event bus line 1			

Note : This register should be accessed in a halfword.

w = - : write invalid

10.2 Units common to timers

F/F source select register 1 (FFS1) <A

<Address : H'0080 0223>

D8	9	10	11	12	13	14	D15
FF	19	FF	18	FF	17	FF	16

<at reset<="" th=""><th>:</th><th>H'00></th></at>	:	H'00>
--	---	-------

D	Bit name	Function	R	W
8, 9	FF19 (F/F19 source select)	0x: TIO8 output		
		10: Output event bus line 0		
		11: Output event bus line 1		
10, 11	FF18 (F/F18 source select)	0x: TIO7 output		
		10: Output event bus line 0		
		11: Output event bus line 1		
12, 13	FF17 (F/F17 source select)	0x: TIO6 output		
		10: Output event bus line 0		
		11: Output event bus line 1		
14, 15	FF16 (F/F16 source select)	00: TIO5 output		
		01: Output event bus line 0		
		10: Output event bus line 1		
		11: Output event bus line 3		

FFS0 and FFS1 are the registers that specify the signal source to each output flip-flop. An internal output bus line or the underflow output of each timer can be selected as the signal source to each flip-flop.
10.2 Units common to timers

F/F protect register 0 (FFP0)

<Address : H'0080 0224>

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
FP15	FP14	FP13	FP12	FP11	FP10	FP9	FP8	FP7	FP6	FP5	FP4	FP3	FP2	FP1	FP0

<at reset : H'0000>

D	Bit name	Function	R	W
0	FP15 (F/F15 protect)	0: Write enabled to the F/F output bit		
1	FP14 (F/F14 protect)	1: Write disabled to the F/F output bit		
2	FP13 (F/F13 protect)			
3	FP12 (F/F12 protect)			
4	FP11 (F/F11 protect)			
5	FP10 (F/F10 protect)			
6	FP9 (F/F9 protect)	—		
7	FP8 (F/F8 protect)			
8	FP7 (F/F7 protect)			
9	FP6 (F/F6 protect)			
10	FP5 (F/F5 protect)			
11	FP4 (F/F4 protect)	—		
12	FP3 (F/F3 protect)			
13	FP2 (F/F2 protect)			
14	FP1 (F/F1 protect)			
15	FP0 (F/F0 protect)			

Note : These registers should be accessed in halfwords.

10.2 Units common to timers

F/	/F protect register 1 (FFP1)				<add< th=""><th colspan="4"><address 0229="" :="" h'0080=""></address></th><th></th><th></th></add<>	<address 0229="" :="" h'0080=""></address>					
	D8 9 10			11	12	13	14	D15			
		1		FP20	FF19	FF18	FP17	FP16			
	Ditagon	_								<at reset<="" th=""><th>t : H'00></th></at>	t : H'00>
$\frac{D}{2}$	Bit name	<u>)</u>		Fur	iction					R	VV
8 to 10		gnea. /Eao Dro		0.1	<u> </u>			a	:.	0	_
11	FP20 (F	/FZU Pro	Dieci)	0: \	write ena	abled to	the F/F	output b	It		
12	FP19 (F	/F19 Prc	otect)	1: \	Nrite dis	abled to	the F/F	output b	oit		
13	FP18 (F	/F18 Pro	otect)								
14	FP17 (F	/F17 Pro	otect)								
15	FP16 (F	/F16 Pro	otect)								

W = - : write invalid

These registers enable and disable a write to each output flip-flop. When a write is disabled, writing to the corresponding F/F data register is invalid.

10.2 Units common to timers

F/F	data register	0 (FFD0)	<address< th=""><th>: H'0080</th><th>0226></th></address<>	: H'0080	0226>
-----	---------------	----------	---	----------	-------

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
FD15	FD14	FD13	FD12	FD11	FD10	FD9	FD8	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0

<at reset : H'0000>

D	Bit name	Function	R W
0	FD15 (F/F15 protect)	0: F/F output data = 0	
1	FD14 (F/F14 protect)	1: F/F output data = 1	
2	FD13 (F/F13 protect)		
3	FD12 (F/F12 protect)		
4	FD11 (F/F11 protect)		
5	FD10 (F/F10 protect)		
6	FD9 (F/F9 protect)		
7	FD8 (F/F8 protect)		
8	FD7 (F/F7 protect)		
9	FD6 (F/F6 protect)		
10	FD5 (F/F5 protect)		
11	FD4 (F/F4 protect)		
12	FD3 (F/F3 protect)		
13	FD2 (F/F2 protect)		
14	FD1 (F/F1 protect)		
15	FD0 (F/F0 protect)		

Note : This register should be accessed in a halfword.

These registers set the output level of each output flip-flop. Usually the output of a flip-flop changes in response to its timer output. However, an F/F output level can arbitrary be set by these registers. Each bit of the F/F data registers is effective only when the corresponding bit of the above-mentioned F/F protect registers is set to 0 (enable).

10.2 Units common to timers

F/F data register 1 (FFD1) <Address : H'0080 022B>

D8	9	10	11	12	13	14	D15
			FD20	FD19	FD18	FD17	FD16

<at reset : H'00> D Bit name Function R W 8 to 10 Not assigned. 0 _ 0: F/F output data = 011 FD20 (F/F20 Output Data) 12 FD19 (F/F19 Output Data) 1: F/F output data = 1 13 FD18 (F/F18 Output Data) 14 FD17 (F/F17 Output Data) 15 FD16 (F/F16 Output Data)

w = - : write invalid

10.2 Units common to timers

10.2.6 Interrupt control unit

The interrupt control unit controls the interrupt signals outputted from each timer to the interrupt controller. The MJT timers have the following 15 timer interrupt control registers:

- TOP interrupt control register 0 (TOPIR0)
- TOP interrupt control register 1 (TOPIR1)
- TOP interrupt control register 2 (TOPIR2)
- TOP interrupt control register 3 (TOPIR3)
- TIO interrupt control register 0 (TIOIR0)
- TIO interrupt control register 1 (TIOIR1)
- TIO interrupt control register 2 (TIOIR2)
- TMS interrupt control register (TMSIR)
- TIN interrupt control register 0 (TINIR0)
- TIN interrupt control register 1 (TINIR1)
- TIN interrupt control register 2 (TINIR2)
- TIN interrupt control register 3 (TINIR3)
- TIN interrupt control register 4 (TINIR4)
- TIN interrupt control register 5 (TINIR5)
- TIN interrupt control register 6 (TINIR6)

The interrupt signals of each timer are managed by its status and mask registers. The configuration including an interrupt status and a mask register is shown in Figure 10.2.3.

Fig. 10.2.3 Interrupt status register and mask register

10.2 Units common to timers

The relation between the interrupt signals outputted from multi-junction timers and the inputs to the interrupt controller is shown in Table 10.2.6.

Signal name	Interrupt sources	ICU interrupt input (see note 1)
IRQ0	TIO0, TIO1, TIO2, TIO3	MJT output interrupt 0
IRQ1	TOP6, TOP7	MJT output interrupt 1
IRQ2	TOP0, TOP1, TOP2, TOP3,	MJT output interrupt 2
	TOP4, TOP5	
IRQ3	TIO8, TIO9	MJT output interrupt 3
IRQ4	TIO4, TIO5, TIO6, TIO7	MJT output interrupt 4
IRQ5	TOP10	MJT output interrupt 5 (see note 2)
IRQ6	TOP8, TOP9	MJT output interrupt 6
IRO7	TMS0, TMS1	MJT output interrupt 7
IRQ8	TIN7, TIN8, TIN9, TIN10, TIN11	MJT input interrupt 0
IRQ9	TIN0, TIN1, TIN2	MJT input interrupt 1
IRQ10	TIN12, TIN13, TIN14, TIN15,	MJT input interrupt 2
	TIN16, TIN17, TIN18, TIN19	
IRQ11	TIN20, TIN21, TIN22, TIN23	MJT input interrupt 3
IRQ12	TIN3, TIN4, TIN5, TIN6	MJT input interrupt 4

Table 10.2.6 Interrupt signals generated by MJTs

Notes 1: Refer to Chapter 13 " Interrupt controller (ICU)".

2: Because TOP10 has only one source as an interrupt group, the corresponding interrupt control register of MJT is not provided with either a status resister or a mask resister for TOP10 (the interrupt controller directly controls the interrupt signal).

10.2 Units common to timers TOP interrupt control register 0 (TOPIR0) <Address : H'0080 0230> D0 1 2 3 4 5 6 D7 TOPIS5 TOPIS4 TOPIS3 TOPIS2 TOPIS1 TOPIS0

D	Bit name	Function	R	W
0, 1	Not assigned.		0	-
2	TOPIS5 (TOP5 interrupt status)	0: No interrupt requested		
3	TOPIS4 (TOP4 interrupt status)	1: Interrupt requested		
4	TOPIS3 (TOP3 interrupt status)			
5	TOPIS2 (TOP2 interrupt status)			
6	TOPIS1 (TOP1 interrupt status)			
7	TOPIS0 (TOP0 interrupt status)			

W = -: write invalid

W = : Only a write of 0 is valid. The bits to which 1s have been written retain the contents in the value preceding to the write.

TOP interrupt control register 1 (TOPIR1)

<Address : H'0080 0231>

<at reset : H'00>

D	Bit name	Function	R	W
8, 9	Not assigned.		0	_
10	TOPIM5 (TOP5 interrupt mask)	0: Interrupt request enabled		
11	TOPIM4 (TOP4 interrupt mask)	1: Interrupt request masked (Inhibited)		
12	TOPIM3 (TOP3 interrupt mask)			
13	TOPIM2 (TOP2 interrupt mask)			
14	TOPIM1 (TOP1 interrupt mask)			
15	TOPIM0 (TOP0 interrupt mask)			

W = - : write invalid

10.2 Units common to timers

W = -: write invalid

W = : Only a write of 0 is valid. The bits to which 1s have been written retain the contents in the value preceding to the write.

<Address : H'0080 0233>

W =

<at reset : H'00>

D	Bit name	Function		R	W
8, 9	Not assigned.			0	_
10	TOPIS9 (TOP9 interrupt status)	0: No interrupt requested			
11	TOPIS8 (TOP8 interrupt status)	1: Interrupt requested			
12, 13	Not assigned.			0	_
14	TOPIM9 (TOP9 interrupt mask)	0 : Interrupt request enabled			
15	TOPIM8 (TOP8 interrupt mask)	1 : Interrupt request masked (Inhibited)			
			W = -:	write	invalid

: Only a write of 0 is valid. The bits to which 1s have been

written retain the contents in the value preceding to the write.

Note : Because TOP10 has only one source as an interrupt group, the corresponding interrupt control register of MJT is not provided with either a status resister or a mask resister for TOP10 (the interrupt controller directly controls the interrupt signal).

10.2 Units common to timers

TIO interrupt control register 0 (TIOIR0)

<Address : H'0080 0234>

<at reset : H'00>

D	Bit name	Function	R	W
0	TIOIS3 (TIO3 interrupt status)	0 : No interrupt requested		
1	TIOIS2 (TIO2 interrupt status)	1 : Interrupt requested		
2	TIOIS1 (TIO1 interrupt status)			
3	TIOIS0 (TIO0 interrupt status)			
4	TIOIM3 (TIO3 interrupt mask)	0 : Interrupt request enabled		
5	TIOIM2 (TIO2 interrupt mask)	1 : Interrupt request masked (Inhibited)		
6	TIOIM1 (TIO1 interrupt mask)			
7	TIOIM0 (TIO0 interrupt mask)			

W = : Only a write of 0 is valid. The bits to which 1s have been written retain the contents in the value preceding to the write.

TIO interrupt control register 1 (TIOIR1)

<Address : H'0080 0235>

D8	9	10	11	12	13	14	D15
TIOIS7	TIOIS6	TIOIS5	TIOIS4	TIOIM7	TIOIM6	TIOIM5	TIOIM4

			<at reset<="" th=""><th>: H'00></th></at>	: H'00>
D	Bit name	Function	R	W
8	TIOIS7 (TIO7 interrupt status)	0 : No interrupt requested		
9	TIOIS6 (TIO6 interrupt status)	1 : Interrupt requested		
10	TIOIS5 (TIO5 interrupt status)			
11	TIOIS4 (TIO4 interrupt status)			
12	TIOIM7 (TIO7 interrupt mask)	0 : Interrupt request enabled		
13	TIOIM6 (TIO6 interrupt mask)	1 : Interrupt request masked (Inhibited)		
14	TIOIM5 (TIO5 interrupt mask)			
15	TIOIM4 (TIO4 interrupt mask)			

W = : Only a write of 0 is valid. The bits to which 1s have been written retain the contents in the value preceding to the write.

10.2 Units common to timers

	TIO	TIO interrupt control register 2 (TIO)IR2)	2) <address 0236="" :="" h'0080=""></address>			0236>			
		DO	1	2	3	1	5	6	דס			
			1	TIOIS9	TIOIS8	4		TIOIM9	TIOIM8			
D		Bit name				Funct	ion				<at reso<="" td=""><td>et : H'00> W</td></at>	et : H'00> W
0, 1		Not assig	gned.								0	_
2		TIOIS9 (TOP9 ir	nterrupt	status)	0 : No	o interru	ot reques	sted			
3		TIOIS8 (TOP8 ir	nterrupt	status)	1 : In	terrupt re	equested				
4, 5		Not assig	gned.								0	_
6		TIOIM9 (TOP9 i	nterrupt	mask)	0 : In	terrupt r	equest e	nabled			
7		TIOIM8 (TOP8 i	nterrupt	mask)	 1 : In	terrupt r	equest m	nasked (I	nhibited)		

1 : Interrupt request masked (Inhibited)

TIOIM8 (TOP8 interrupt mask)

W = -: write invalid

W = : Only a write of 0 is valid. The bits to which 1s have been written retain the contents in the value preceding to the write.

10.2 Units common to timers TMS interrupt control register (TMSIR) <Address : H'0080 0237> D8 9 10 11 12 13 14 D15 D8 9 10 11 12 13 14 D15 TMSIS1 TMSIS0 TMSIM1 TMSIM0 <at reset : H'00>

				. 1100/
D	Bit name	Function	R	W
8, 9	Not assigned.		0	_
10	TMSIS1 (TMS1 interrupt status)	0 : No interrupt requested		
11	TMSIS0 (TMS0 interrupt status)	1 : Interrupt requested		
12, 13	Not assigned.		0	-
14	TMSIM1 (TMS1 interrupt mask)	0 : Interrupt request enabled		
15	TMSIM0 (TMS0 interrupt mask)	1 : Interrupt request masked (Inhibited)		

W = -: write invalid

W = : Only a write of 0 is valid. The bits to which 1s have been written retain the contents in the value preceding to the write.

10.2 Units common to timers

15 TINIM3 (TIN3 interrupt mask)

> : Only a write of 0 is valid. The bits to which 1s have been W = written retain the contents in the value preceding to the write.

10.2	Units comn	non to	o timer	S							
	TIN interrupt	IN interrupt control register 2 (TINI				₹2) <address 023a="" :="" h'0080=""></address>					
	D0	1	2	3	4	5	6	D7			
			1	TINIS11	TINIS10	TINIS9	TINIS8	TINIS7			
									J		
										<at reset<="" th=""><th>t:H'00></th></at>	t:H'00>
D	Bit name				Functi	on				R	W
0 to 2	Not assig	gned.								0	-
3	TINIS11	(TIN11	interrup	t status)	0 : No	interrup	ot reques	sted			
4	TINIS10	(TIN10	interrup	t status)	1 : Int	errupt re	equested				
5	TINIS9 (TIN9 in	terrupt s	tatus)							
6	TINIS8 (TIN8 in	terrupt s	tatus)							
7	TINIS7 (TIN7 in	terrupt s	tatus)							

W = -: write invalid

W = : Only a write of 0 is valid. The bits to which 1s have been written retain the contents in the value preceding to the write.

TIN interrupt control register 3 (TINIR3)

TINIS7 (TIN7 interrupt status)

<Address : H"0080 023B>

D8	9	10	11	12	13	14	D15
		1	TINIM11	TINIM10	TINIM9	TINIM8	TINIM7

<at reset : H'00>

D	Bit name	Function	R	W	_
8 to 10	Not assigned.		0	-	_
11	TINIM11 (TIN11 interrupt mask)	0 : Interrupt request enabled			
12	TINIM10 (TIN10 interrupt mask)	1 : Interrupt request masked (Inhibited)			
13	TINIM9 (TIN9 interrupt mask)				
14	TINIM8 (TIN8 interrupt mask)				
15	TINIM7 (TIN7 interrupt mask)				
					_

W = -: write invalid

10.2 Units common to timers

TIN interrupt control register 4 (TINIR4)

<Address : H'0080 023C>

<at reset : H'00>

D	Bit name	Function	R	W
0	TINIS19 (TIN19 interrupt status)	0: No interrupt requested		
1	TINIS18 (TIN18 interrupt status)	1: Interrupt requested		
2	TINIS17 (TIN17 interrupt status)			
3	TINIS16 (TIN16 interrupt status)			
4	TINIS15 (TIN15 interrupt status)			
5	TINIS14 (TIN14 interrupt status)			
6	TINIS13 (TIN13 interrupt status)			
7	TINIS12 (TIN12 interrupt status)			

W = : Only a write of 0 is valid. The bits to which 1s have been written retain the contents in the value preceding to the write.

TIN interrupt control register 5 (TINIR5)

<Address : H'0080 023D>

D8	9	10	11	12	13	14	D15
TINIM19	TINIM18	TINIM17	TINIM16	TINIM15	TINIM14	TINIM13	TINIM12

<at reset : H'00>

D	Bit name	Function	R	W
8	TINIM19 (TIN19 interrupt mask)	0: Interrupt request enabled		
9	TINIM18 (TIN18 interrupt mask)	1: Interrupt request masked (Inhibited)		
10	TINIM17 (TIN17 interrupt mask)			
11	TINIM16 (TIN16 interrupt mask)			
12	TINIM15 (TIN15 interrupt mask)			
13	TINIM14 (TIN14 interrupt mask)			
14	TINIM13 (TIN13 interrupt mask)			
15	TINIM12 (TIN12 interrupt mask)	_		

10.2 Units common to timers

TIN interrupt control register 6 (TINIR6)

<Address : H'0080 023E>

<at reset : H'00>

D	Bit name	Function	R	W
0	TINIS23 (TIN23 interrupt status)	0 : No interrupt requested		
1	TINIS22 (TIN22 interrupt status)	1 : Interrupt requested		
2	TINIS21 (TIN21 interrupt status)			
3	TINIS20 (TIN20 interrupt status)	_		
4	TINIM23 (TIN23 interrupt mask)	0 : Interrupt request enabled		
5	TINIM22 (TIN22 interrupt mask)	1 : Interrupt request masked (Inhibited)		
6	TINIM21 (TIN21 interrupt mask)			
7	TINIM20 (TIN20 interrupt mask)			
			4	

W = : Only a write of 0 is valid. The bits to which 1s have been written retain the contents in the value preceding to the write.

10.3 TOP (16-bit timers related to output)

10.3 TOP (16-bit timers related to output)

10.3.1 Summary of TOPs

TOPs (Timer Output) are the 16-bit timers related to output. The following timer modes are selectable by mode switching with software:

- Single-shot output mode
- Delayed single-shot output mode
- Continuous output mode

The specification of TOPs is shown in Table 10.3.1, and the TOP block diagram is shown in Figure 10.3.1.

Item	Description					
Number of channels	11 channels					
Counters	16-bit down counters					
Reload registers	16-bit reload registers					
Adjust registers	16-bit adjust registers					
Start of counter	A write to the corresponding enable bit of the TOP0 to TOP10 count					
	enable register with software or an external input for enabling					
	(rising edge, falling edge, or double edges)					
Mode switching	< With adjust function >					
	 Single-shot output mode 					
	 Delayed single-shot output mode 					
	< Without adjust function >					
	Continuous output mode					
Interrupt generation	To be generated by counter underflows					

Table 10.3.1 Specification of TOPs (16-bit timers related to output)

10.3 TOP (16-bit timers related to output)

Fig. 10.3.1 TOP (16-bit Timers Related to Output) Block Diagram

10.3.2 Outline of TOP modes

(1) Single-shot output mode

The single-shot output mode is the mode used to generate a pulse with the width of a TOP reload register value + 1 only once and to stop.

When a TOP counter is enabled (by a write of 1 to the corresponding enable bit of the TOP count enable register with software or an external input for enabling) after the corresponding TOP reload register is set, the contents of the reload register are loaded into the counter synchronized to the count clock, and the counter starts counting. The counter counts down and stops at underflow. The F/F output waveform in the single-shot output mode is inverted at a start and an underflow, and

a single-shot pulse with the width of the reload register value + 1 is generated only once. An interrupt can be generated at a counter underflow.

(2) Delayed single-shot output mode

Delayed single-shot output mode is the mode used to generate a pulse with the width of a TOP reload register value + 1 only once after a delay of the value loaded in the corresponding TOP counter + 1 and to stop.

When a TOP counter is enabled (by a write of 1 to the corresponding enable bit of the TOP count enable register with software or an external input for enabling) after it and the corresponding TOP reload register are set, the counter starts down-counting at the value loaded into it synchronized to the count clock.

The counter is reloaded with the reload register value at the first underflow, resumes down-counting and stops at the second underflow.

The F/F output waveform in the delayed single-shot output mode is inverted at the first and second underflows, and a single-shot pulse with the width of the reload register value + 1 is generated only once after a delay of the value first loaded in the counter + 1.

Interrupts can be generated at the first and second counter underflows.

(3) Continuous output mode

In the continuous output mode, a TOP counter starts down-counting at the value loaded into it and is reloaded with the value of the corresponding TOP reload register at a counter underflow. At every underflow, the counter repeats this operation and generates continuous pulses of the waveform inverted with a width of the reload register value + 1.

When a TOP counter is enabled (by a write of 1 to the corresponding enable bit of the TOP count enable register with software or an external input for enabling) after it and the corresponding TOP reload register are set, the counter starts down-counting at the value loaded into it synchronized to the count clock and generates underflow.

At this underflow the counter is reloaded with the contents of the reload register and resumes downcounting. Thereafter, the counter repeats this operation at every underflow. To stop counting, disable the counter by a write of 0 to the enable bit with software.

The F/F output waveforms in the continuous output mode are inverted at a start and every underflow and outputted continuously until the counter stops.

An interrupt can be generated at every counter underflow.

10.3 TOP (16-bit timers related to output)

10.3.3 Register map related to TOPs

The register map related to the TOP is shown in Figure 10.3.2.

Fig. 10.3.2 Register map related to TOPs (1/3)

10.3 TOP (16-bit timers related to output)

Fig. 10.3.2 Register map related to TOPs (2/3)

10.3 TOP (16-bit timers related to output)

Fig. 10.3.2 Register map related to TOPs (3/3)

10.3 TOP (16-bit timers related to output)

10.3.4 TOP control registers

The TOP control registers specify the operating mode (the single-shot, the delayed single-shot, or the continuous mode), the counter enable source, and the counter clock source of each TOP counter. Each TOP timer has the following four TOP control registers:

- TOP0 to TOP5 control register 0 (TOP05CR0) (see note)
- TOP0 to TOP5 control register 1 (TOP05CR1)
- TOP6, TOP7 control register (TOP67CR) (see note)
- TOP8 to TOP10 control register (TOP810CR) (see note)

NOTE

TOP05CR0, TOP67CR, and TOP810CR should be accessed with halfwords. If a byte is written to either half of a halfword, indeterminate data is written to the other half of it.

10.3 TOP (16-bit timers related to output)

TOP0 to TOP 5 control register 0 (TOP05CR0)

<Address : H'0080 029A>

D0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
ТОРЗМ	TOF	P2M	TOF	P1M	TOF	POM		TOP05ENS				TC C	DP05 CKS	

<at reset: H'0000>

D	Bit name	Function	R	W
0, 1	ТОРЗМ	00: Single-shot output mode		
	(TOP3 operating mode select)	01: Delayed single-shot output mode		
2, 3	TOP2M	1x: Continuous output mode		
	(TOP2 operating mode select)			
4, 5	TOP1M			
	(TOP1 operating mode select)			
6, 7	TOP0M			
	(TOP0 operating mode select)			
8	Not assigned.		0	_
$ \begin{array}{r} D \\ 0, 1 \\ \hline 2, 3 \\ \hline 4, 5 \\ \hline 6, 7 \\ \hline 8 \\ 9 to 11 \\ \hline 12, 13 \\ 14, 15 \\ \hline $	TOP05ENS	0xx: External TIN0 input		
	(TOP0 to TOP5 enable source	100: Input event bus line 0		
	select)	101: Input event bus line 1		
		110: Input event bus line 2		
		111: Input event bus line 3		
12, 13	Not assigned.		0	-
14, 15	TOP05CKS	00: Clock bus line 0		
	(TOP0 to TOP5 clock source	01: Clock bus line 1		
	select)	10: Clock bus line 2		
2, 3 4, 5 6, 7 8 9 to 11 <u>12, 13</u> 14, 15		11: Clock bus line 3		

W = - : Write invalid

Notes 1: This register is accessible only with a halfword.

2: Operating modes should be set or changed while counters are stopped.

10.3 TOP (16-bit timers related to output)

т	OP0 to TOP5 control register 1 (TOP05CR1)	P05CR1) <address :="" h'0080<="" th=""></address>				
	D8 9 10 11	12 13	14 D15				
		TOP5M	TOP4M				
D	Bit name	Function		<at h'00="" reset:=""> R W</at>			
8 to 11	Not assigned.			0 -			
12, 13	ТОР5М	00: Single-shot					
	(TOP5 operating mode select)	01: Delayed si	ngle-shot output mode)			
14, 15	TOP4M	1x: Continuous	s output mode				
	(TOP4 operating mode select)						
				W = - · Write invalid			

Note: Operating modes should be set or changed while counters are stopped.

Fig. 10.3.3 Configuration of clock/enable inputs to TOP0 to TOP5

10.3 TOP (16-bit timers related to output)

TOP6, TOP7 control register (TOP67CR)

<Address : H'0080 02AA>

			<at reset:<="" th=""><th>H'0000></th></at>	H'0000>
D	Bit name	Function	R	W
0	Not assigned.		0	_
1	TOP7ENS	0: Result of TOP67ENS bit		
	(TOP7 enable source select)	1: TOP6 output		
DBit nameFunction0Not assigned.1TOP7ENS0: Result of TOP67ENS b (TOP7 enable source select)2, 3TOP7M00: Single-shot output2, 3TOP7M00: Single-shot output mo (TOP7 operating mode select)4, 5Not assigned.6, 7TOP6M00: Single-shot output mo (TOP6 operating mode select)9 to 11TOP67ENS (TOP6, TOP7 enable source9 to 11TOP67ENS (TOP6, TOP7 enable source12, 13Not assigned.12, 13Not assigned.14, 15TOP67CKS (TOP6, TOP7 clock source select)14, 15TOP67CKS (TOP6, TOP7 clock source select)11: Clock bus line 1 select)00: Clock bus line 1 10: Clock bus line 2 11: Clock bus line 2 11: Clock bus line 3	ТОР7М	00: Single-shot output mode		
	(TOP7 operating mode select)	01: Delayed single-shot output mode		
	1x: Continuous output mode			
4, 5	Not assigned.		0	_
6, 7	TOP6M	00: Single-shot output mode		
4, 5 6, 7 8 9 to 11	(TOP6 operating mode select)	01: Delayed single-shot output mode		
		1x: Continuous output mode		
8	Not assigned.		0	_
9 to 11	TOP67ENS	0xx: External TIN1 input		
$ \begin{array}{r} D \\ 0 \\ 1 \\ 2, 3 \\ \hline 4, 5 \\ 6, 7 \\ \hline 8 \\ 9 to 11 \\ \hline 12, 13 \\ 14, 15 \\ \hline 14, 15 \\ \end{array} $	(TOP6, TOP7 enable source	100: Input event bus line 0		
	select)	101: Input event bus line 1		
		110: Input event bus line 2		
		111: Input event bus line 3		
12, 13	Not assigned.		0	_
14, 15	TOP67CKS	00: Clock bus line 0		
	(TOP6, TOP7 clock source	01: Clock bus line 1		
	select)	10: Clock bus line 2		
		11: Clock bus line 3		

W = - : Write invalid

Notes 1: This Register is accessible only with a halfword.

2: Operating modes should be set or changed while counters are stopped.

10.3 TOP (16-bit timers related to output)

10.3 TOP (16-bit timers related to output)

TOP8 to TOP10 control register (TOP810CR) <Address : H'0080 02EA> D0 2 3 4 5 6 7 8 9 10 11 12 13 14 D15 1 TOP 810 ENS TOP10M TOP9M TOP8M TOP810CKS

<at reset: H'0000>

D	Bit name	Function	R	W
0, 1	Not assigned.		0	_
2, 3	TOP10M	00: Single-shot output mode		
	(TOP10 operating mode select)	01: Delayed single-shot output mode		
4, 5	ТОР9М	1x: Continuous output mode		
	(TOP9 operating mode select)			
6, 7	TOP8M	_		
	(TOP8 operating mode select)			
8 to 10	Not assigned.		0	_
11	TOP810ENS	0: External TIN2 input		
	(TOP8 to TOP10 enable source	1: Input event bus line 3		
	select)			
12, 13	Not assigned.		0	-
14, 15	TOP810CKS	00: Clock bus line 0		
	(TOP8 to TOP10 clock source	01: Clock bus line 1		
	select)	10: Clock bus line 2		
		11: Clock bus line 3		

W = - : Write invalid

Notes 1: This Register is accessible only with a halfword.

2: Operating modes should be set or changed while counters are stopped.

10.3 TOP (16-bit timers related to output)

10.3 TOP (16-bit timers related to output)

10.3.5 TOP counters (TOP0CT to TOP10CT)

The TOP counters are 16-bit down-counters. When a TOP counter is enabled (by a write of 1 to the corresponding enable bit of the TOP count enable register with software or an external input for enabling), it starts counting synchronized to the count clock.

NOTE

TOP0CT to TOP10CT should be accessed with halfwords. If a byte is written to either half of a halfword, indeterminate data is written to the other half of it.

TOP0 counter (TOP0CT)	<address 0240="" :="" h'0080=""></address>
TOP1 counter (TOP1CT)	<address 0250="" :="" h'0080=""></address>
TOP2 counter (TOP2CT)	<address 0260="" :="" h'0080=""></address>
TOP3 counter (TOP3CT)	<address 0270="" :="" h'0080=""></address>
TOP4 counter (TOP4CT)	<address 0280="" :="" h'0080=""></address>
TOP5 counter (TOP5CT)	<address 0290="" :="" h'0080=""></address>
TOP6 counter (TOP6CT)	<address 02a0="" :="" h'0080=""></address>
TOP7 counter (TOP7CT)	<address 02b0="" :="" h'0080=""></address>
TOP8 counter (TOP8CT)	<address 02c0="" :="" h'0080=""></address>
TOP9 counter (TOP9CT)	<address 02d0="" :="" h'0080=""></address>
TOP10 counter (TOP10CT)	<address 02e0="" :="" h'0080=""></address>

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15

<at reset:="" undefined=""></at>	<	at reset:	undefined>	
----------------------------------	---	-----------	------------	--

D	Bit names	Function	R	W
0 to 15	TOP0CT to TOP10CT	Each 16-bit counter value		

Note: These registers are accessible only with halfwords.

10.3 TOP (16-bit timers related to output)

10.3.6 TOP reload registers (TOP0RL to TOP10RL)

The TOP reload registers are used to load data into the TOP counter registers (TOP0CT to TOP10CT). At the time data is written to a reload register, the data is not yet loaded into the corresponding counter. The contents of the reload register are loaded into the counter under the following conditions:

- the counter is set enabled in the single-shot mode
- the counter underflows in the delayed single-shot or continuous mode.

Reloading of data after underflow is performed synchronized to the clock that has caused the underflow.

NOTE

TOP0RL to TOP10RL should be accessed with halfwords. If a byte is written to either half of a halfword, indeterminate data is written to the other half of it.

TOP0 reload register (TOP0RL)	<address 0242="" :="" h'0080=""></address>
TOP1 reload register (TOP1RL)	<address 0252="" :="" h'0080=""></address>
TOP2 reload register (TOP2RL)	<address 0262="" :="" h'0080=""></address>
TOP3 reload register (TOP3RL)	<address 0272="" :="" h'0080=""></address>
TOP4 reload register (TOP4RL)	<address 0282="" :="" h'0080=""></address>
TOP5 reload register (TOP5RL)	<address 0292="" :="" h'0080=""></address>
TOP6 reload register (TOP6RL)	<address 02a2="" :="" h'0080=""></address>
TOP7 reload register (TOP7RL)	<address 02b2="" :="" h'0080=""></address>
TOP8 reload register (TOP8RL)	<address 02c2="" :="" h'0080=""></address>
TOP9 reload register (TOP9RL)	<address 02d2="" :="" h'0080=""></address>
TOP10 reload register (TOP10RL)	<address 02e2="" :="" h'0080=""></address>

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
TOP0RL to TOP10RL															

			<at reset:="" th="" u<=""><th>Indefi</th><th>ned></th></at>	Indefi	ned>
D	Bit names	Function		R	W
0 to 15	TOP0RL to TOP10RL	Each 16-bit reload register value			

Note: These registers are accessible only with halfwords.

10.3 TOP (16-bit timers related to output)

10.3.7 TOP adjust registers (TOP0CC to TOP10CC)

The TOP adjust registers are used to adjust (add or subtract) the values of the TOP counters while the counters are operating. To increase or decrease the value of a counter, the increment or decrement from the initial value of the counter is written to the corresponding adjust register. For addition, the value to be added is written into the adjust register, and for subtraction, 2's complement of the value to be subtracted is written.

The counter will be adjusted synchronized to the clock subsequent to the write of the adjust value to the adjust register. Note that if the counter adjusted, the down count synchronized to the above clock will be canceled simultaneously, and the actual adjust will have the adjust register value + 1 as a result.

For example, if 3 is written to the adjust register when the counter with its initial value of 10 counts 5, an underflow will occur at a total of 14 counts.

NOTE

TOP0CC to TOP10CC should be accessed with half words. If a byte is written to either half of a halfword, indeterminate data is written to the other half of it.

TOP0 adjust register (TOP0CC)	<address 0246="" :="" h'0080=""></address>
TOP1 adjust register (TOP1CC)	<address 0256="" :="" h'0080=""></address>
TOP2 adjust register (TOP2CC)	<address 0266="" :="" h'0080=""></address>
TOP3 adjust register (TOP3CC)	<address 0276="" :="" h'0080=""></address>
TOP4 adjust register (TOP4CC)	<address 0286="" :="" h'0080=""></address>
TOP5 adjust register (TOP5CC)	<address 0296="" :="" h'0080=""></address>
TOP6 adjust register (TOP6CC)	<address 02a6="" :="" h'0080=""></address>
TOP7 adjust register (TOP7CC)	<address 02b6="" :="" h'0080=""></address>
TOP8 adjust register (TOP8CC)	<address 02c6="" :="" h'0080=""></address>
TOP9 adjust register (TOP9CC)	<address 02d6="" :="" h'0080=""></address>
TOP10 adjust register (TOP10CC)	<address 02e6="" :="" h'0080=""></address>

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
TOP0CC to TOP10CC															
(sotting anable value + 22767 to 22768)															

(setting enable value +32767 to -32768)

<at reset: undefined>

D	Bit names	Function	R	W
0 to 15	TOP0CC to TOP10CC	Each 16-bit adjust register value		

10.3 TOP (16-bit timers related to output)

10.3.8 TOP0 to TOP10 external enable permit register (TOPEEN)

< Address: H'0080 02FA >

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
1			I		TOP10 EEN	TOP9 EEN	TOP8 EEN	TOP7 EEN	TOP6 EEN	TOP5 EEN	TOP4 EEN	TOP3 EEN	TOP2 EEN	TOP1 EEN	TOP0 EEN

<at reset: H'0000>

D	Bit name	Function	R	W
0 to 4	Not assigned.		0	-
5	TOP10EEN (TOP10 external enable permit)	0: External enable prohibited		
6	TOP9EEN (TOP9 external enable permit)	1: External enable permitted		
7	TOP8EEN (TOP8 external enable permit)			
8	TOP7EEN (TOP7 external enable permit)			
9	TOP6EEN (TOP6 external enable permit)			
10	TOP5EEN (TOP5 external enable permit)			
11	TOP4EEN (TOP4 external enable permit)			
12	TOP3EEN (TOP3 external enable permit)			
13	TOP2EEN (TOP2 external enable permit)			
14	TOP1EEN (TOP1 external enable permit)			
15	TOP0EEN (TOP0 external enable permit)			

W = - : Write invalid

Note: This Register is accessible only with a halfword.

NOTE

TOPEEN should be accessed with a half word. If a byte is written to either half of a halfword, indeterminate data is written to the other half of it.

The TOP external enable permit register permits or prohibits the operation for enabling the TOP counters from the outside.

10.3 TOP (16-bit timers related to output)

10.3.9 TOP0 to TOP10 enable protect register (TOPPRO)

< Address: H'0080 02FC >

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
		1		1	TOP10 PRO	TOP9 PRO	TOP8 PRO	TOP7 PRO	TOP6 PRO	TOP5 PRO	TOP4 PRO	TOP3 PRO	TOP2 PRO	TOP1 PRO	TOP0 PRO

<at reset: H'0000>

D	Bit name	Function	R	W
0 to 4	Not assigned.		0	-
5	TOP10PRO (TOP10 enable protect)	0: Rewrite permitted		
6	TOP9PRO (TOP9 enable protect)	1: Rewrite prohibited		
7	TOP8PRO (TOP8 enable protect)			
8	TOP7PRO (TOP7 enable protect)			
9	TOP6PRO (TOP6 enable protect)			
10	TOP5PRO (TOP5 enable protect)			
11	TOP4PRO (TOP4 enable protect)			
12	TOP3PRO (TOP3 enable protect)			
13	TOP2PRO (TOP2 enable protect)			
14	TOP1PRO (TOP1 enable protect)			
15	TOP0PRO (TOP0 enable protect)			

W = -: Write invalid

Note: This Register is accessible only with a halfword.

NOTE

TOPPRO should be accessed with halfwords. If a byte is written to either half of a halfword, indeterminate data is written to the other half of it.

The TOP enable protect register permits or prohibits the rewrite of the count enable bits of the TOP count enable register shown on the next page.

10.3 TOP (16-bit timers related to output)

10.3.10 TOP0 to TOP10 count enable register (TOPCEN)

< Address: H'0080 02FE >

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
			I		TOP10 CEN	TOP9 CEN	TOP8 CEN	TOP7 CEN	TOP6 CEN	TOP5 CEN	TOP4 CEN	TOP3 CEN	TOP2 CEN	TOP1 CEN	TOP0 CEN

<at reset: H'0000>

D	Bit name	Function	R	W
0 to 4	Not assigned.		0	-
5	TOP10CEN (TOP10 count enable)	0: Count disabled		
6	TOP9CEN (TOP9 count enable)	1: Count enabled		
7	TOP8CEN (TOP8 count enable)			
8	TOP7CEN (TOP7 count enable)			
9	TOP6CEN (TOP6 count enable)			
10	TOP5CEN (TOP5 count enable)			
11	TOP4CEN (TOP4 count enable)			
12	TOP3CEN (TOP3 count enable)			
13	TOP2CEN (TOP2 count enable)			
14	TOP1CEN (TOP1 count enable)			
15	TOP0CEN (TOP0 count enable)			

W = - : Write invalid

Note: This Register is accessible only with a halfword.

NOTE

TOPCEN should be accessed with a halfword. If a byte is written to either half of a half word, indeterminate data is written to the other half of it.

The TOP count enable register controls the operations of the TOP counters. Any counter can be enabled with software by setting the corresponding bit of the TOP protect register rewrite-permitted and writing a 1 to the corresponding bit of the count enable register.

The counter is stopped by setting the corresponding bit of the TOP protect register rewrite-permitted and writing a 0 to the corresponding bit of the count enable register.

In any mode other than the continuous mode, a count enable bit automatically returns to 0 if the counter stops by underflow. Therefore, if the count enable register is read, it serves as the status register indicating the working condition of the counters (operating or stopped).

10.3 TOP (16-bit timers related to output)

10.3.11 Operation of TOP single-shot output mode (with adjust function)

(1) Summary of TOP single-shot output mode

The single-shot output mode is the mode used to generate a pulse with the width of a TOP reload register value + 1 only once and to stop.

When a TOP counter is enabled (by a write of 1 to the corresponding enable bit of the TOP count enable register with software or an external input for enabling) after the corresponding TOP reload register is set, the contents of the reload register are loaded into the counter synchronized to the count clock, and the counter starts counting. The counter counts down and stops at underflow.

The F/F output waveform in the single-shot output mode is inverted ("L" to "H" or "H" to "L") at a start and an underflow, and a single-shot pulse with the width of the reload register value + 1 is generated only once.

An interrupt can be generated at a counter underflow.

The count value is the reload register value + 1. In Figure 10.3.6, for example, if the initial value of the reload register is 7, the count value is 8.

Fig. 10.3.6 Counting example of TOP single-shot output mode

10.3 TOP (16-bit timers related to output)

In Figure 10.3.7 the initial value of the reload register is H'A000 (the initial value of the counter is allowed to be indeterminate). When the counter is enabled, the value of the reload register is loaded into the counter, which starts and continues down-counting until underflow occurs.

10.3 TOP (16-bit timers related to output)

(2) Adjust function of TOP single-shot output mode

To increase or decrease the value of a TOP counter during operation, the increment or decrement from the initial value of the counter is written to the corresponding TOP adjust register. For addition, the value to be added is written into the adjust register, and for subtraction, 2's complement of the value to be subtracted is written.

The counter will be adjusted synchronized to the clock subsequent to the write of the adjust value to the adjust register. Note that if the counter adjusted, the down count synchronized to the above clock will be canceled simultaneously, and the actual adjust will have the adjust register value + 1 as a result.

For example, if 3 is written to the adjust register when the counter with its initial value of 7 counts 3, an underflow will occur at a total of 12 counts.

Fig. 10.3.8 Adjusting example of TOP single-shot output mode

The TOP adjust registers should be written not to cause the counter overflows. Even if overflow results from writing an adjust register, any interrupt by overflow does not occur in this case. In Figure 10.3.9, for example, the initial value of the reload register is H'8000. When the counter is enabled, the value of the reload register is loaded into the counter, which starts down-counting. In this example, H'4000 is written into the adjust register at the time the counter has reached H'5000. As a result, the counter contains H'9000 and stops when it counts a total of (H'8000 + 1 + H'4000 + 1).

10.3 TOP (16-bit timers related to output)

10.3 TOP (16-bit timers related to output)

(3) Notes on use of TOP single-shot output mode

Notes on the use of the TOP single-shot output mode are as follows:

- If the stop of a TOP counter by underflow and the enabling of it by an external input occur simultaneously at the same clock, the stop of the counter by underflow has the higher priority.
- If the stop of a counter by underflow and a write of 1 (count enabled) to the corresponding count enable bit of the TOP count enable register occur simultaneously at the same clock, the enabling of the counter by the count enable bit has the higher priority.
- If the enabling of a counter by an external input and a write of 0 (count stopped) to the count enable bit occur simultaneously at the same clock, the count stop by the count enable bit has the higher priority.
- The TOP adjust registers should be written not to cause the counter overflows. Even if overflow results from writing an adjust register, any interrupt by overflow does not occur in this case. If underflow occurs by down-counting after overflow, an interrupt by underflow occurs at the erroneous count from the overflow.

In Figure 10.3.10, for example, the initial value of the reload register is H'FFF8. When the counter is enabled, the value of the reload register is loaded into the counter, which starts down-counting. In this example, H'0014 is written into the adjust register at the time the counter has reached H'FFF0. As a result, the counter overflows at H'0004 to be prevented from counting correctly. An interrupt is generated at the erroneous count from the overflow.

10.3 TOP (16-bit timers related to output)

10.3 TOP (16-bit timers related to output)

10.3.12 Operation of TOP delayed single-shot output mode (with adjust function)

(1) Summary of TOP delayed single-shot output mode

The delayed single-shot output mode is the mode used to generate a pulse with the width of a TOP reload register value + 1 only once after a delay of the value loaded in the corresponding TOP counter + 1 and to stop.

When a TOP counter is enabled (by a write of 1 to the corresponding enable bit of the TOP count enable register with software or an external input for enabling) after it and the corresponding TOP reload register are set, the counter starts down-counting at the value loaded into it synchronized to the count clock.

The counter is reloaded with the reload register value at the first underflow, resumes down-counting and stops at the second underflow.

The F/F output waveform in the delayed single-shot output mode is inverted ("L" to "H" or "H" to "L") at the first and second underflows, and a single-shot pulse with the width of the reload register value + 1 is generated only once after a delay of the value first loaded in the counter + 1.

Interrupts can be generated at the first and second counter underflows.

The value loaded in the counter + 1 and the one written to the reload register + 1 are effective for the count values. In Figure 10.3.11, for example, the initial values of the counter and the reload register are 4 and 5 respectively.

10.3 TOP (16-bit timers related to output)

In Figure 10.3.12 the initial value of the counter is H'A000 and that of the reload register is H'F000. When enabled, the counter starts down-counting and underflows to be reloaded with the contents of the reload register. The counter resumes down-counting and stops at the second underflow.

10.3 TOP (16-bit timers related to output)

(2) Adjust function of TOP delayed single-shot output mode

To increase or decrease the value of a TOP counter during operation, the increment or decrement from the initial value of the counter is written to the corresponding TOP adjust register. For addition, the value to be added is written into the adjust register, and for subtraction, 2's complement of the value to be subtracted is written.

The counter will be adjusted synchronized to the clock subsequent to the write of the adjust value to the adjust register. Note that if the counter adjusted, the down count synchronized to the above clock will be canceled simultaneously, and the actual adjust will have the adjust register value + 1 as a result.

For example, if 3 is written to the adjust register when the counter reloaded with the value 7 of the reload register counts 3, underflow will occur at 12 counts after reloading.

Fig. 10.3.13 Counting TOP example when adjusting in delayed single-shot output mode

The TOP adjust registers should be written not to cause the counter overflow. Even if overflow results from writing the adjust register, any interrupt by overflow does not occur in this case.

10.3 TOP (16-bit timers related to output)

Fig. 10.3.14 Operating example when adjusting in TOP delayed single-shot output mode

10.3 TOP (16-bit timers related to output)

(3) Notes on Use of TOP delayed single-shot output mode

Notes on the use of the TOP delayed single-shot output mode are as follows:

- If the stop of a TOP counter by underflow and the enabling of it by an external input occur simultaneously at the same clock, the stop of the counter by underflow has the higher priority.
- If the stop of a counter by underflow and a write of 1 (count enabled) to the corresponding count enable bit of the TOP count enable register occur simultaneously at the same clock, the enabling of the counter by the count enable bit has the higher priority.
- If the enabling of a counter by an external input and a write of 0 (count stopped) to the count enable bit occur simultaneously at the same clock, the count stop by the count enable bit has the higher priority.
- Even if overflow results from writing an adjust register, any interrupt by overflow does not occur in this case. If underflow occurs by down-counting after overflow, an interrupt by underflow occurs at the erroneous count from the overflow.
- If a counter is read back immediately after reloading at underflow, value H'FFFF will be read out temporarily, but the counter will resume the reloaded value 1 at the clock subsequent to reloading.

Fig. 10.3.15 Counter value immidiately after underflow

10.3 TOP (16-bit timers related to output)

10.3.13 Operation of TOP continuous output mode (without adjust function)

(1) Summary of TOP continuous output mode

In the continuous output mode, a TOP counter starts down-counting at the value loaded into it and is reloaded with the value of the corresponding TOP reload register at a counter underflow. At every underflow, the counter repeats this operation and generates continuous pulses of the waveform inverted with a width of the reload register value + 1.

When a TOP counter is enabled (by a write of 1 to the corresponding enable bit of the TOP count enable register with software or an external input for enabling) after it and the corresponding TOP reload register are set, the counter starts down-counting at the value loaded into it synchronized to the count clock and generates underflow.

At this underflow the counter is reloaded with the contents of the reload register and resumes downcounting.

Thereafter, the counter repeats this operation at every underflow. To stop counting, disable the counter by a write of 0 to the enable bit with software.

The F/F output waveforms in the continuous output mode are inverted ("L" to "H" or "H" to "L") at a start and every underflow and outputted continuously until the counter stops.

Also, an interrupt can be generated at every counter underflow.

The value loaded in the counter + 1 and the one written to the reload register + 1 are effective for the count values. In Figure 10.3.16, for example, the initial values of the counter and the reload register are 4 and 5 respectively.

Fig. 10.3.16 Counting in the TOP continuous output mode

10.3 TOP (16-bit timers related to output)

In Figure 10.3.17 the initial value of the counter is H'A000 and that of the reload register is H'E000. When enabled, the counter starts down-counting, underflows to be reloaded with the contents of the reload register, and resumes down-counting.

10.3 TOP (16-bit timers related to output)

(2) Notes on use of TOP continuous output mode

Notes on the use of the TOP continuous output mode are as follows:

- If the enabling of a TOP counter by an external input and a write of 0 (count stopped) to the corresponding count enable bit of the TOP count enable register occur simultaneously at the same clock, the count stop by the count enable bit has the higher priority.
- If a counter is read back immediately after reloading at underflow, value H'FFFF will be read out temporarily, but the counter will resume the reloaded value 1 at the clock subsequent to reloading.

10.4 TIO (16-bit timers related to input/output)

10.4.1 Summary of TIOs

TIOs (Timer Input/Output) are the 16-bit timers related to input/output. The following timer modes are selectable by mode switching with software:

< Input Mode >

- Measure clear input mode
- Measure free-run input mode
- Noise processing input mode

< Output Mode Without Adjust Function >

- PWM output mode
- Single-shot output mode
- Delayed single-shot output mode
- Continuous output mode

The specification of TIOs is shown in Table 10.4.1, and the TIO block diagram is shown in Figure 10.4.1.

ltem	Description
Number of channels	10 channels
Counters	16-bit down-counters
Reload registers	16-bit reload registers
Measure registers	16-bit capture registers
Start of counter	A write to the corresponding enable bit of the TIO0 to TIO9 count
	enable register with software or an external input for enabling
	(rising edge, falling edge, double edges, or H/L level))
Mode switching	< Input Modes >
	Measure clear input mode
	 Measure free-run input mode
	 Noise processing input mode
	< Without adjust function >
	 Single-shot output mode
	 Delayed single-shot output mode
	Continuous output mode
Interrupt generation	To be generated by counter underflows

Table 10.4.1 Specification of TIOs (16-bit timers related to input/output)

10.4 TIO (16-bit timers related to input/output)

Fig. 10.4.1 TIO (16-bit timers related to input/output) block diagram

10.4.2 Outline of TIO modes

The summary of TIO modes is shown below. Only one of these modes can be selected as the mode for each TIO channel.

(1) Measure (clear/free-run) input mode

The measure (clear/free-run) input mode is the mode used to measure a period of time from the count start to an external capture signal input.

When a TIO counter is enabled (by a write of 1 to the corresponding enable bit of the TIO count enable register with software), it starts down-counting synchronized to the count clock and, if an external capture signal is inputted, writes its value at that time to the corresponding TIO measure register.

In the measure clear input mode, the counter is initialized to H'FFFF at capture and resumes down-counting.

In the measure free-run input mode, the counter continues down-counting after capture and, if underflow occurs, returns to H'FFFF to resume counting.

To stop counting, disable the counter by a write of 0 to the enable bit with software.

An interrupt can be generated by a counter underflow or the execution of measure operation.

(2) Noise processing input mode

The noise processing input mode is the mode used to detect an input signal remaining in the same state for more than a fixed time.

In the noise processing input mode, a TIO counter starts at the external input "L" or "H" and, if the input signal remains in the same state for more than a fixed time to a counter underflow, generates an interrupt and stops. If the valid level of the signal inputted is forced to be invalid before a counter underflow, the counter stops once and after the valid level is input again, it will be reloaded with the initial value and resume counting.

The counter is stopped simultaneously at a counter underflow or a write of 0 to the corresponding count enable bit of the TIO count enable register.

An interrupt can be generated at a counter underflow.

(3) PWM output mode (without adjust function)

The PWM output mode is the mode used to generate the waveform with an arbitrary duty cycle using two TIO reload registers.

When a TIO counter is enabled (by a write of 1 to the corresponding enable bit of the TIO count enable register with software or an external input for enabling) after the corresponding TIO reload 0 and reload 1 registers are initialized, the counter is loaded with the contents of the reload 0 register and starts down-counting synchronized to the count clock.

The counter is reloaded with the contents of the reload 1 register at the first underflow, and thereafter, it is reloaded alternatively by the reload 0 and the reload 1 register at each underflow.

The F/F output waveform in the PWM output mode is inverted at a count start and every underflow. The counter is stopped simultaneously at a write of 0 to the corresponding count enable bit of the TIO count enable register (not synchronized to the PWM output cycle).

An interrupt can be generated at the 2Nth counter underflow after the counter enabled, where N is a positive integer.

(4) Single-shot output mode (without adjust function)

The single-shot output mode is the mode used to generate a pulse with the width of a TIO reload 0 register value + 1 only once and to stop.

When a TIO counter is enabled (by a write of 1 to the corresponding enable bit of the TIO count enable register with software or an external input for enabling) after the corresponding reload 0 register is set, the contents of the reload 0 register are loaded into the counter synchronized to the count clock, and the counter starts counting. The counter counts down and stops at underflow.

The F/F output waveform in the single-shot output mode is inverted at a start and an underflow, and a single-shot pulse with the width of the reload 0 register value + 1 is generated only once.

An interrupt can be generated at a counter underflow.

(5) Delayed single-shot output mode (without adjust function)

The delayed single-shot output mode is the mode used to generate a pulse with the width of a TIO reload 0 register value + 1 only once after a delay of the value loaded in the corresponding TIO counter + 1 and to stop.

When a TIO counter is enabled (by a write of 1 to the corresponding enable bit of the TIO count enable register with software or an external input for enabling) after it and the corresponding TIO reload 0 register are set, the counter starts down-counting at the value loaded into it synchronized to the count clock.

The counter is reloaded with the reload 0 register value at the first underflow, resumes downcounting and stops at the second underflow.

The F/F output waveform in the delayed single-shot output mode is inverted at the first and second underflows, and a single-shot pulse with the width of the reload 0 register value + 1 is generated only once after a delay of the value first loaded in the counter + 1.

Interrupts can be generated at the first and second counter underflows.

(6) Continuous output mode (without adjust function)

In the continuous output mode, a TIO counter starts down-counting at the value loaded into it and is reloaded with the value of the corresponding TIO reload 0 register at a counter underflow. At every underflow, the counter repeats this operation and generates continuous pulses of the waveform inverted with a width of the reload 0 register value + 1.

When a TIO counter is enabled (by a write of 1 to the corresponding enable bit of the TIO count enable register with software or an external input for enabling) after it and the corresponding TIO reload 0 register are set, the counter starts down-counting at the value loaded into it synchronized to the count clock and generates underflow.

At this underflow the counter is reloaded with the contents of the reload 0 register and resumes down-counting.

Thereafter, the counter repeats this operation at every underflow. To stop counting, disable the counter by a write of 0 to the enable bit with software.

The F/F output waveforms in the continuous output mode are inverted at a start and every underflow and outputted pulse waveforms continuously until the conter stops.

Also, an interrupt can be generated at every counter underflow.

10.4.3 Register map related to TIO

The register map related to TIO is shown in Figure 10.3.2.

Fig. 10.4.2 Register map related to TIOs (1/3)

10.4 TIO (16-bit timers related to input/output)

Fig. 10.4.2 Register map related to TIOs (2/3)

10.4 TIO (16-bit timers related to input/output)

Fig. 10.4.2 Register map related to TIOs (3/3)

10.4.4 TIO control registers

The TIO control registers specify the operating mode (measure input, the noise processing input, the PWM output, the single-shot, the delayed single-shot, or the continuous mode), the counter enable source, and the counter clock source of each TIO counter.

Each TIO timer has the following eight TIO control registers:

•TIO0 to TIO3 control register 0 (TIO03CR0) (see note)

- •TIO0 to TIO3 control register 1 (TIO03CR1)
- •TIO4 control register (TIO4CR)

•TIO5 control register (TIO5CR)

- •TIO6 control register (TIO6CR)
- •TIO7 control register (TIO7CR)
- •TIO8 control register (TIO8CR)
- •TIO9 control register (TIO9CR)

NOTE

TIO0 to TIO3 control register should be accessed with halfwords. If a byte is written to either half of a half word, indeterminate data is written to the other half of it.

10.4 TIO (16-bit timers related to input/output)

TIO0 to TIO3 control register 0 (TIO03CR0)

<Address : H'0080 031A>

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
TIO3 EEN		TIN3M	1	TIO2 ENS	-	TIN2M	I	TIO1 ENS		TIO1M	1	TIO0 ENS			Л

<at reset: H'0000>

D	Bit name	Function	R	W
0	TIO3EEN	0: External input inhibited		
	(TIO3 external input permit)	1: External input permit		
1 to 3	TIO3M	000: Single-shot output mode		
	(TIO3 operating mode select)	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		11x: Noise processing input mode		
4	TIO2ENS(TIO2 enable/	0: Unselected		
	measure input source select)	1: External input TIN5		
5 to 7	TIO2M	000: Single-shot output mode		
	(TIO2 operating mode select)	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		11x: Noise processing input mode		
8	TIO1ENS(TIO1 enable/	0: Unselected		
	measure input source select)	1: External input TIN4		
9 to 11	TIO1M	000: Single-shot output mode		
	(TIO1 operating mode select)	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		11x: Noise processing input mode		

(Continued to the next page)

Notes 1: This register is accessible only with a halfword.

(Continue	d from the previous page)		<at reset:<="" th=""><th>H'0000></th></at>	H'0000>
D	Bit name	Function	R	W
12	TIO0ENS(TIO0 enable/	0: Unselected		
	measure input source select)	1: External input TIN3		
13 to 15	TIO0M	000: Single-shot output mode		
	(TIO0 operating mode select)	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		11x: Noise processing input mode		

Notes 1: This register is accessible only with a halfword.

Fig. 10.4.3 Configuration of colck/enable input to TIO0 to TIO4

10.4 TIO (16-bit timers related to input/output)

TIOO	to TIO3	3 contro	l registe	r 1 (TIO	03CR1)	<a>	ddress	: H'0080	031D>
	D8	9	10	11	12	13	14	D15	
							TIO0	3CKS	

<at reset: H'00>

D	Bit name	Function	R	W
8 to 13	Not assigned.		0	_
14, 15	TIO03CKS	00: Clock bus line 0		
	(TIO0 to TIO3 clock source	01: Clock bus line 1		
	select)	10: Clock bus line 2		
		11: Clock bus line 3		

W = - : Write invalid

10.4 TIO (16-bit timers related to input/output)

D0	1	2	3	4	5	6	D7
TIO	1CKS	TIO4EEN	TIO3	4ENS		TIO4M	

<Address H'0080 034A>

TIO4 control register (TIO4CR)

<at reset: H'00>

D	Bit name	Function	R	W
0, 1	TIO4CKS	00: Clock bus line 0		
	(TIO4 clock source select)	01: Clock bus line 1		
		10: Clock bus line 2		
		11: Clock bus line 3		
2	TIO4EEN	0: External input inhibited		
	(TIO4 external input permit)	1: External input permit		
3, 4	TIO34ENS	0x: External TIN6 input		
	(TIO3 and TIO4 enable/measure	10: Input event bus line 2		
	input source select)	11: Input event bus line 3		
5 to 7	TIO4M	000: Single-shot output mode		
	(TIO4 operating mode select)	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		11x: Noise processing input mode		

10.4 TIO (16-bit timers related to input/output)

10.4 TIO (16-bit timers related to input/output)

<Address : H'0080 034B>

D8	9	10	11	12	13	14	D15
TIO5CKS		TIO5	ENS		TIO5M		

TIO5 control register (TIO5CR)

			<at reset<="" th=""><th>: H'00></th></at>	: H'00>
D	Bit name	Function	R	W
8 to 10	TIO5CKS	0xx: External TCLK1 input		
	(TIO5 clock source select)	100: Clock bus line 0		
		101: Clock bus line 1		
		110: Clock bus line 2		
		111: Clock bus line 3		
11, 12	TIO5ENS	0x: Unselected		
	(TIO5 enable/measure input	10: External TIN7 input		
	source select)	11: Input event bus line 3		
13 to 15	TIO5M	000: Single-shot output mode		
	(TIO5 operating mode select)	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		11x: Noise processing input mode		

10.4 TIO (16-bit timers related to input/output)

 TIO6 control register (TIO6CR)
 <Address : H'0080 036A>

 D0
 1
 2
 3
 4
 5
 6
 D7

 TIO6CKS
 TIO6ENS
 TIO6M
 TIO6M

			<at rese<="" th=""><th>et: H'00></th></at>	et: H'00>
D	Bit name	Function	R	W
0 to 2	TIO6CKS	0xx: External TCLK2 input		
	(TIO6 clock source select)	100: Clock bus line 0		
		101: Clock bus line 1		
		110: Clock bus line 2		
		111: Clock bus line 3		
3, 4	TIO6ENS	00: Unselected		
	(TIO6 enable/measure input	01: External TIN8 input		
	source select)	10: Input event bus line 2		
		11: Input event bus line 3		
5 to 7	TIO6M	000: Single-shot output mode		
	(TIO6 operating mode select)	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		11x: Noise processing input mode		

10.4 TIO (16-bit timers related to input/output)

<Address : H'0080 036B>

D8	9	10	11	12	13	14	D15
	TIO	7CKS	TIO7	ENS		TIO7M	

TIO7 control register (TIO7CR)

			<at reset:<="" th=""><th>H'00></th></at>	H'00>
D	Bit name	Function	R	W
8	Not assigned.		0	-
9, 10	TIO7CKS	00: Clock bus line 0		
	(TIO7 clock source select)	01: Clock bus line 1		
		10: Clock bus line 2		
		11: Clock bus line 3		
11, 12	TIO7ENS	00: Unselected		
	(TIO7 enable/measure input	01: External TIN9 input		
	source select)	10: Input event bus line 0		
		11: Input event bus line 3		
13 to 15	TIO7M	000: Single-shot output mode		
	(TIO7 operating mode select)	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		11x: Noise processing input mode		

W = - : Write invalid

10.4 TIO (16-bit timers related to input/output)

TIO8 control register (TIO8CR) <Address : H'0080 038A>

<at< th=""><th>reset:</th><th>H'00></th></at<>	reset:	H'00>

D	Bit name	Function	R	W
0, 1	TIO8CKS	00: Clock bus line 0		
	(TIO8 clock source select)	01: Clock bus line 1		
		10: Clock bus line 2		
		11: Clock bus line 3		
2 to 4	TIO8ENS	0xx: Unselected		
	(TIO8 enable/measure input	100: External TIN10 input		
	source select)	101: Input event bus line 1		
		110: Input event bus line 2		
		111: Input event bus line 3		
5 to 7	TIO8M	000: Single-shot output mode		
	(TIO8 operating mode select)	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		11x: Noise processing input mode		

10.4 TIO (16-bit timers related to input/output)

<Address : H'0080 038B>

D8	9	10	11	12	13	14	D15
	TIO	9CKS	TIOS)ENS		TIO9M	

TIO9 control register (TIO9CR)

			<at reset:<="" th=""><th>H'00></th></at>	H'00>
D	Bit name	Function	R	W
8	Not assigned.		0	-
9, 10	TIO9CKS	00: Clock bus line 0		
	(TIO9 clock source select)	01: Clock bus line 1		
		10: Clock bus line 2		
		11: Clock bus line 3		
11, 12	TIO9ENS	00: Unselected		
	(TIO9 enable/measure input	01: External TIN11 input		
	source select)	10: Input event bus line 1		
		11: Input event bus line 3		
13 to 15	TIO9M	000: Single-shot output mode		
	(TIO9 operating mode select)	001: Delayed single-shot output mode		
		010: Continuous output mode		
		011: PWM output mode		
		100: Measure clear input mode		
		101: Measure free-run input mode		
		11x: Noise processing input mode		
		١٨		involid

 : Write invalid VV =

10.4.5 TIO counters (TIO0CT to TIO9CT)

The TIO counters are 16-bit down-counters. When a TIO counter is enabled (by a write of 1 to the corresponding enable bit of the TIO count enable register with software or an external input for enabling), it starts counting synchronized to the count clock.

The TIO counters can not be written in PWM output mode.

NOTE

TIO0CT to TIO9CT should be accessed with halfwords. If a byte is written to either half of a half word, indeterminate data is written to the other half of it.

TIO0 counter (TIO0CT)	<address 0300="" :="" h'0080=""></address>
TIO1 counter (TIO1CT)	<address 0310="" :="" h'0080=""></address>
TIO2 counter (TIO2CT)	<address 0320="" :="" h'0080=""></address>
TIO3 counter (TIO3CT)	<address 0330="" :="" h'0080=""></address>
TIO4 counter (TIO4CT)	<address 0340="" :="" h'0080=""></address>
TIO5 counter (TIO5CT)	<address 0350="" :="" h'0080=""></address>
TIO6 counter (TIO6CT)	<address 0360="" :="" h'0080=""></address>
TIO7 counter (TIO7CT)	<address 0370="" :="" h'0080=""></address>
TIO8 counter (TIO8CT)	<address 0380="" :="" h'0080=""></address>
TIO9 counter (TIO9CT)	<address 0390="" :="" h'0080=""></address>

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
						TIC	DOCT t	o TIOS	ЭСТ						

<at reset : undefined>

D	Bit names	Function	R	W
0 to 15	TIO0CT to TIO9CT	Each 16-bit counter value		

Can not be written in PWM output mode

Note: These registers are accessible only with halfwords.

10.4.6 TIO reload 0/measure register (TIO0RL0 to TIO9RL0)

The TIO reload 0/measure registers serve as the registers to reload data to the TIO counter registers (TIO0CT to TIO9CT) and the measure registers in the measure input mode. These registers are write-disabled in the measure input mode.

At the time data is written to a reload 0 register, the data is not yet loaded into the corresponding counter. The contents of the reload 0 register are loaded into the counter under the following conditions:

- After the counter has started in the noise processing input mode, the valid level of the signal is inverted before a counter underflow, and the valid level is input again, or
- the counter is set enabled in the single-shot mode, or
- the counter underflows in the delayed single-shot or continuous mode.

On the other hand, as measure registers, they capture the counter contents using event inputs.

NOTE

TIO0RL to TIO9RL should be accessed with halfwords. If a byte is written to either half of a half word, indeterminate data is written to the other half of it.

TIO0 reload	0/measure re	egister (T	IO0RL0)	<address :="" h'0080<="" th=""><th>0306></th></address>	0306>
TIO1 reload	0/measure re	egister (T	IO1RL0)	<address :="" h'0080<="" td=""><td>0316></td></address>	0316>
TIO2 reload	0/measure re	egister (T	IO2RL0)	<address :="" h'0080<="" td=""><td>0326></td></address>	0326>
TIO3 reload	0/measure re	egister (T	IO3RL0)	<address :="" h'0080<="" td=""><td>0336></td></address>	0336>
TIO4 reload	0/measure re	egister (T	IO4RL0)	<address :="" h'0080<="" td=""><td>0346></td></address>	0346>
TIO5 reload	0/measure re	egister (T	IO5RL0)	<address :="" h'0080<="" td=""><td>0356></td></address>	0356>
TIO6 reload	0/measure re	egister (T	IO6RL0)	<address :="" h'0080<="" td=""><td>0366></td></address>	0366>
TIO7 reload	0/measure re	egister (T	IO7RL0)	<address :="" h'0080<="" td=""><td>0376></td></address>	0376>
TIO8 reload	0/measure re	egister (T	IO8RL0)	<address :="" h'0080<="" td=""><td>0386></td></address>	0386>
TIO9 reload	0/measure re	egister (T	IO9RL0)	<address :="" h'0080<="" td=""><td>0396></td></address>	0396>

D0 2 3 5 7 13 14 D15 4 6 8 9 10 11 12 1 TIO0RL1 to TIO9RL1

<at reset : undefined>

D	Bit names	Function	R	W
0 to 15	TIO0RL0 to TIO9RL0	Each 16-bit reload register value		

Can not be written in measure input mode

Note: These registers are accessible only with halfwords.

10.4 TIO (16-bit timers related to input/output)

10.4.7 TIO reload 1 registers (TIO0RL1 to TIO9RL1)

The TIO reload 1 registers are used to reload data to the TIO counter registers (TIO0CT to TIO9CT). At the time data is written to a reload 1 register, the data is not yet loaded into the corresponding counter. The contents of the reload 1 register are loaded into the counter loaded with the reload 0 register underflows in the PWM output mode.

NOTE

TIO0RL1 to TIO9RL1 should be accessed with halfwords. If a byte is written to either half of a half word, indeterminate data is written to the other half of it.

TIO0 reload1	register	(TIO0RL1)	<address< th=""><th>: H'0080</th><th>0304></th></address<>	: H'0080	0304>
TIO1 reload1	register	(TIO1RL1)	<address< td=""><td>: H'0080</td><td>0314></td></address<>	: H'0080	0314>
TIO2 reload1	register	(TIO2RL1)	<address< td=""><td>: H'0080</td><td>0324></td></address<>	: H'0080	0324>
TIO3 reload1	register	(TIO3RL1)	<address< td=""><td>: H'0080</td><td>0334></td></address<>	: H'0080	0334>
TIO4 reload1	register	(TIO4RL1)	<address< td=""><td>: H'0080</td><td>0344></td></address<>	: H'0080	0344>
TIO5 reload1	register	(TIO5RL1)	<address< td=""><td>: H'0080</td><td>0354></td></address<>	: H'0080	0354>
TIO6 reload1	register	(TIO6RL1)	<address< td=""><td>: H'0080</td><td>0364></td></address<>	: H'0080	0364>
TIO7 reload1	register	(TIO7RL1)	<address< td=""><td>: H'0080</td><td>0374></td></address<>	: H'0080	0374>
TIO8 reload1	register	(TIO8RL1)	<address< td=""><td>: H'0080</td><td>0384></td></address<>	: H'0080	0384>
TIO9 reload1	register	(TIO9RL1)	<address< td=""><td>: H'0080</td><td>0394></td></address<>	: H'0080	0394>

D0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
TIO0RL1 to TIO9RL1														

<at reset : undefined>

D	Bit names	Function	R	W
0 to 15	TIO0RL1 to TIO9RL1	Each 16-bit reload register value		

Note: These registers are accessible only with halfwords.

10.4 TIO (16-bit timers related to input/output)

10.4.8 TIO0 to TIO9 enable protect register (TIOPRO)

< Address: H'0080 03BC >

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
						TIO9 PRO	TIO8 PRO	TIO7 PRO	TIO6 PRO	TIO5 PRO	TIO4 PRO	TIO3 PRO	TIO2 PRO	TIO1 PRO	TIO0 PRO

<at reset : H'0000>

D	Bit name	Function	R	W
0 to 5	Not assigned		0	-
6	TIO9PRO (TIO9 enable protect)	0: Rewrite permitted		
7	TIO8PRO (TIO8 enable protect)	1: Rewrite prohibited		
8	TIO7PRO (TIO7 enable protect)			
9	TIO6PRO (TIO6 enable protect)			
10	TIO5PRO (TIO5 enable protect)	_		
11	TIO4PRO (TIO4 enable protect)	_		
12	TIO3PRO (TIO3 enable protect)	_		
13	TIO2PRO (TIO2 enable protect)	_		
14	TIO1PRO (TIO1 enable protect)	_		
15	TIO0PRO (TIO0 enable protect)	—		

W = - : Write invalid

Note : This register is accessable only with a halfword.

NOTE

TIOPRO should be accessed with halfwords. If a byte is written to either half of a halfword, indeterminate data is written to the other half of it.

The TIO enable protect register permits or prohibits the rewrite of the count enable bits of the TIO count enable register shown on the next page.

10.4 TIO (16-bit timers related to input/output)

10.4.9 TIO0 to TIO9 count enable register (TIOCEN)

< Address: H'0080 03BE >

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
		1			1	TIO9 CEN	TIO8 CEN	TIO7 CEN	TIO6 CEN	TIO5 CEN	TIO4 CEN	TIO3 CEN	TIO2 CEN	TIO1 CEN	TIO0 CEN

<at reset : H'0000>

D	Bit name		Function	R	W
0 to 5	Not assigned			0	-
6	TIO9CEN (TIO9	count enable)	0: Count disabled		
7	TIO8CEN (TIO8	count enable)	1: Count enabled		
8	TIO7CEN (TIO7	count enable)			
9	TIO6CEN (TIO6	count enable)			
10	TIO5CEN (TIO5	count enable)			
11	TIO4CEN (TIO4	count enable)			
12	TIO3CEN (TIO3	count enable)			
13	TIO2CEN (TIO2	count enable)			
14	TIO1CEN (TIO1	count enable)			
15	TIO0CEN (TIO0	count enable)	-		

W = - : write invalid

Note : This register is accessable only with a halfword.

NOTE

TIOCEN should be accessed with halfwords. If a byte is written to either half of a half word, indeterminate data is written to the other half of it.

The TIO count enable register controls the operations of the TIO counters. Any counter can be enabled with software by setting the corresponding bit of the TIO enable protect register rewrite-permitted and writing a 1 to the corresponding bit of the count enable register.

The counter is stopped by setting the corresponding bit of the TIO protect register rewrite-permitted and writing a 0 to the corresponding bit of the count enable register.

In any mode other than the continuous mode, a count enable bit automatically returns to 0 if the counter stops by underflow. Therefore, if the count enable register is read, it serves as the status register indicating the working condition of the counters (operating or stopped).

10.4.10 Operation of TIO measure (free-run/clear) input mode

(1) Summary of TIO measure (free-run/clear) input mode

The measure (clear/free-run) input mode is the mode used to measure a period of time from the count start to an external capture signal input.

An interrupt can be generated by a counter underflow or the execution of measure operation.

When a TIO counter is enabled (by a write of 1 to the corresponding enable bit of the TIO count enable register with software), it starts down-counting synchronized to the count clock and, if an external capture signal is inputted, writes its value at that time to the corresponding TIO measure register.

In the measure clear input mode, the counter is initialized to H'FFFF at capture and resumes down-counting.

In the measure free-run input mode, the counter continues down-counting after capture and, if underflow occurs, returns to H'FFFF to resume counting.

To stop counting, disable the counter by a write of 0 to the enable bit with software.

Fig. 10.4.5 Operation example of measure free-run input mode
10.4 TIO (16-bit timers related to input/output)

Figure 10.4.6 Operation example of measure clear input mode

(2) Notes on use of TIO measure (free-run/clear) input mode

Notes on the use of TIO measure (free-run/clear) input mode are as follows:

- If the capture signal generates between readouting to the counter and generating the count clock, the counter value before writing to the counter is stored (Therefore, if the capture signal generates between after releasing reset and starting the counter, the counter value is undefined).
- In the measure clear input mode, the capture signal generates between the counter clear and generating the count clock, at the measure register the counter value before clearing the counter is stored.
- About readouting value from the counter, the current counter value always readout without generating of the count clock.

10.4.11 Operation of TIO noise processing input mode

The noise processing input mode is the mode used to detect an input signal remaining in the same state for more than a fixed time.

In the noise processing input mode, a TIO counter starts at the external input LOW or HIGH and, if the input signal remains in the same state for more than a fixed time to a counter underflow, generates an interrupt and stops. If the valid level of the signal inputted is forced to be invalid before a counter underflow, the counter stops once and after the valid level is input again, it will be reloaded with the initial value and resume counting. The valid count width is the reload 0 register value + 1.

The counter is stopped simultaneously at a counter underflow or a write of 0 to the corresponding count enable bit of the TIO count enable register.

An interrupt can be generated at a counter underflow.

10.4.12 Operation of TIO PWM output mode

(1) Summary of TIO PWM output mode

The PWM output mode is the mode used to generate the waveform with an arbitrary duty cycle using two TIO reload registers.

When a TIO counter is enabled (by a write of 1 to the corresponding enable bit of the TIO count enable register with software or an external input for enabling) after the corresponding reload 0 and reload 1 registers are initialized, the counter is loaded with the contents of the reload 0 register and starts down-counting synchronized to the count clock. The counter is reloaded with the contents of the reload 1 register at the first underflow, and thereafter, it is reloaded alternatively by the reload 0 and the reload 1 register at each underflow. The valid count widths are the reload 0 register value + 1 and the reload 1 register value + 1.

The counter is stopped simultaneously at a write of 0 to the corresponding count enable bit of the TIO count enable register (not synchronized to the PWM output cycle).

The F/F output waveform in the PWM output mode is inverted (LOW to HIGH or HIGH to LOW) at a count start and every underflow.

An interrupt can be generated at the counter underflow of even times after counter enable. Note that the TIO PWM output mode is not provided with adjust function.

10.4 TIO (16-bit timers related to input/output)

Fig. 10.4.9 Operation example of PWM output mode

(2) Updating of reload registers in TIO PWM mode

In the PWM output mode, a reload 0 and the corresponding reload 1 register can be updated simultaneously with writes of data to them when the corresponding counter is stopped. However, care must be exercised to update the registers when the counter is operating.

To rewrite a reload 0 and the corresponding reload 1 register at the same time during counter operation, rewrite the reload 1 register at first, and then rewrite the reload 0 register, so that both registers will operate with the updated values synchronized to the PWM period (the current or the next one).

Generally, this updating can be performed in the single operation by accessing a 32-bit word beginning at the address of the reload 1 register (the reload 1 and the reload 0 register are rewritten automatically in this order).

If the reload 1 register is updated after the reload 0 register, only the reload 0 register might operate with the updated value synchronized to the PWM period (the current or the next one). Also, note that when the reload 0 or reload 1 register is read, the written value, not the value actually used to reload, is always read back.

In addition, if the reload 0 and the reload 1 registers are rewritten before the reloading operation of the reload 0 register, the registers will be updated at the current PWM period. If they are, however, rewritten after the reloading operation, the registers will be updated at the next PWM period.

10.4 TIO (16-bit timers related to input/output)

10.4.13 Operation of TIO single-shot output mode (without adjust function)

(1) Summary of TIO single-shot output mode

The single-shot output mode is the mode used to generate a pulse with the width of a TIO reload 0 register value + 1 only once and to stop.

When a TIO counter is enabled (by a write of 1 to the corresponding enable bit of the TIO count enable register with software or an external input for enabling) after the corresponding reload 0 register is set, the contents of the reload 0 register are loaded into the counter synchronized to the count clock, and the counter starts counting. The counter counts down and stops at underflow.

The F/F output waveform in the single-shot output mode is inverted ("L" to "H" or "H" to "L") at a start and an underflow, and a single-shot pulse with the width of the reload 0 register value + 1 is generated only once.

An interrupt can be generated at a counter underflow.

The count value is the reload 0 register value + 1 (for the count operation, refer to Section 10.3.11 "Operation of TOP single-shot output mode").

(2) Notes on use of TIO single-shot output mode

Notes on the use of the TIO single-shot output mode are as follows:

- If the stop of a TIO counter by underflow and the enabling of it by an external input occur simultaneously at the same clock, the stop of the counter by underflow has the higher priority.
- If the stop of a counter by underflow and a write of 1 (count enabled) to the corresponding count enable bit of the TIO count enable register occur simultaneously at the same clock, the enabling of the counter by the count enable bit has the higher priority.
- If the enabling of a counter by an external input and a write of 0 (count stopped) to the count enable bit occur simultaneously at the same clock, the count stop by the count enable bit has the higher priority.

10.4 TIO (16-bit timers related to input/output)

10.4.14 Operation of TIO delayed single-shot output mode (without adjust function)

(1) Summary of TIO delayed single-shot output mode

The delayed single-shot output mode is the mode used to generate a pulse with the width of a TIO reload 0 register value + 1 only once after a delay of the value loaded in the corresponding TIO counter + 1 and to stop.

When a TIO counter is enabled (by a write of 1 to the corresponding enable bit of the TIO count enable register with software or an external input for enabling) after it and the corresponding TIO reload 0 register are set, the counter starts down-counting at the value loaded into it synchronized to the count clock.

The counter is reloaded with the reload 0 register value at the first underflow, resumes downcounting and stops at the second underflow.

The F/F output waveform in the delayed single-shot output mode is inverted at the first and second underflows, and a single-shot pulse with the width of the reload 0 register value + 1 is generated only once after a delay of the value first loaded in the counter + 1.

Interrupts can be generated at the first and second counter underflows.

The count value is valid the counter value + 1 and the reload 0 register value + 1 (for the count operation, refer to Section 10.3.12 "Operation of TOP delayed single-shot output mode").

(2) Notes on use of TIO delayed single-shot output mode

Notes on the use of the TIO delayed single-shot output mode are as follows:

- If the stop of a TIO counter by underflow and the enabling of it by an external input occur simultaneously at the same clock, the stop of the counter by underflow has the higher priority.
- If the stop of a counter by underflow and a write of 1 (count enabled) to the corresponding count enable bit of the TIO count enable register occur simultaneously at the same clock, the enabling of the counter by the count enable bit has the higher priority.
- If the enabling of a counter by an external input and a write of 0 (count stopped) to the count enable bit occur simultaneously at the same clock, the count stop by the count enable bit has the higher priority.
- If a counter is read back immediately after reloading at underflow, value H'FFFF will be read out temporarily, but the counter will resume the reloaded value 1 at the clock subsequent to reloading.

10.4 TIO (16-bit timers related to input/output)

10.4.15 Operation of TIO continuous output mode (without adjust function)

(1) Summary of TIO continuous output mode

In the continuous output mode, a TIO counter starts down-counting at the value loaded into it and is reloaded with the value of the corresponding TIO reload 0 register at a counter underflow. At every underflow, the counter repeats this operation and generates continuous pulses of the waveform inverted with a width of the reload 0 register value + 1.

When a TIO counter is enabled (by a write of 1 to the corresponding enable bit of the TIO count enable register with software or an external input for enabling) after it and the corresponding reload 0 register are set, the counter starts down-counting at the value loaded into it synchronized to the count clock and generates underflow.

At this underflow the counter is reloaded with the contents of the reload 0 register and resumes down-counting. Thereafter, the counter repeats this operation at every underflow. To stop counting, disable the counter by a write of 0 to the enable bit with software.

The F/F output waveforms in the continuous output mode is inverted ("L" to "H" or "H" to "L") at a start and every underflow and outputted continuously until the counter stops.

An interrupt can be generated at every counter underflow.

The value loaded in the counter + 1 and the one written to the reload 0 register + 1 are effective for the count values (for the count operation, refer to Section 10.3.11 "Operation of TOP continuous output mode").

(2) Notes on Use of TIO continuous output mode

Notes on the use of the TIO continuous output mode are as follows:

- If the stop of a TIO counter by underflow and the enabling of it by an external input occur simultaneously at the same clock, the stop of the counter by underflow has the higher priority.
- If the stop of a counter by underflow and a write of 1 (count enabled) to the corresponding count enable bit of the TIO count enable register occur simultaneously at the same clock, the enabling of the counter by the count enable bit has the higher priority.
- If the enabling of a counter by an external input and a write of 0 (count stopped) to the count enable bit occur simultaneously at the same clock, the count stop by the count enable bit has the higher priority.
- If a counter is read back immediately after reloading at underflow, value H'FFFF will be read out temporarily, but the counter will resume the reloaded value 1 at the clock subsequent to reloading.

10.4 TIO (16-bit timers related to input/output)

10.5 TMS (16-bit timers related to input)

10.5.1 Summary of TMSs

TMSs (Timer Measure Small) are the 16-bit timers related to input and are used to measure the input pulses of a total of 8 channels (2 systems with 4 channels each).

The specification of TMSs is shown in Table 10.5.1, and the TMS block diagram is shown in Figure 10.5.1.

Table 10.5.1 Specification of TMSs (16-bit timers related to input)

Item	Description
Number of channels	8 channels (2 systems with 4 channels each)
Counters	16-bit up-counters (2)
Measure registers	16-bit measure registers (8)
Start of counter	A write to enable bit with software
Interrupt generation	To be generated by counter overflows

10.5.2. Summary of TMS Operation

When a TMS counter is enabled (by a write to the enable bit with software), it starts up-counting. If a measure signal is generated by an external input, the value in the counter at that time is captured into the selected TMS measure register.

The counter is stopped simultaneously at a write of 0 to the corresponding count enable bit.

A TIN interrupt can be generated by an external measure signal input, as well as a TMS interrupt by a counter overflow.

10.5 TMS (16-bit timers related to input)

10.5 TMS (16-bit timers related to input)

10.5.3 Register map related to TMS

The register map related to TMSs is shown in Figure 10.5.2.

Fig. 10.5.2 Register map related to TMSs

10.5 TMS (16-bit timers related to input)

10.5.4 TMS control registers

The TMS control registers select the input event bus line, the counter clock source, and the counter operation of the TMS0 and the TMS1 counter each.

Each timer has the following two TMS control registers:

- TMS0 control register (TMS0CR)
- TMS1 control register (TMS1CR)

TMS0 control register (TMS0CR)

<Address : H'0080 03CA>

<at reset : H'00>

D	Bit name	Function	R	W
0	TMS0SS0	0: External TIN15 input		
	(TMS0 mesure 0 source select)	1: Input event bus line 0		
1	TMS0SS1	0: External TIN14 input		
	(TMS0 measure 1 source select)	1: Input event bus line 1		
2	TMS0SS2	0: External TIN13 input		
	TMS0 measure 2 source select)	1: Input event bus line 2		
3	TMS0SS3	0: External TIN12 input		
	(TMS0 measure source select)	1: Input event bus line 3		
4, 5	TMS0CKS	00: External CLK3 input		
	(TMS0 clock source select)	01: Clock bus line 0		
		10: Clock bus line 1		
		11: Clock bus line 3		
6	Not assigned.		0	-
7	TMSOCEN	0: Count stopped		
	(TMS0 count enable)	1: Count enabled		

W = - : Write invalid

10.5 TMS (16-bit timers related to input)

TMS1 control register (TMS1CR)

<Address : H'0080 03CB>

<at reset : H'00>

D	Bit name	Function	R	W
8	TMS1SS0	0: External TIN19 input		
	(TMS1 mesure 0 source select)	1: Input event bus line 0		
9	TMS1SS1	0: External TIN18 input		
	(TMS1 measure 1 source select)	1: Input event bus line 1		
10	TMS1SS2	0: External TIN17 input		
	TMS1 measure 2 source select)	1: Input event bus line 2		
11	TMS1SS3	0: External TIN16 input		
	(TMS1 measure 3 source select)	1: Input event bus line 3		
12	Not assigned.		0	-
13	TMS1CKS	0: Clock bus line 0		
	(TMS1 clock source select)	1: Clock bus line 3		
14	Not assigned.		0	-
15	TMS1CEN	0: Count stopped		
	(TMS count enable)	1: Count enabled		

W = - : Write invalid

10.5 TMS (16-bit timers related to input)

10.5.5 TMS counters (TMS0CT, TMS1CT)

The TMS counters are the 16-bit up-counters and, when enabled (by a write of 1 to the corresponding enable bit of the TMS control registers with software), start up-counting. The counters can be read during operation.

NOTE

TMS0CT and TMS1CT should be accessed with halfwords. If a byte is written to either half of a halfword, indeterminate data is written to the other half of it.

TMS0 counter (TMS0CT)	<address 03c0="" :="" h'0080=""></address>
TMS1 counter (TMS1CT)	<address 03d0="" :="" h'0080=""></address>

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
	TMS0CT, TMS1CT														

<at reset : Undefined>

D	Bit name	Function	R	W
0 to 15	TMS0CT, TMS1CT	16-bit counter value		

Note : These registers are accsessible only with halfwords.

10.5.6 TMS measure register (TMS0MR3 to TMS0MR0, TMS1MR3 to TMS1MR0)

The TMS measure registers are the registers that capture the corresponding TMS counter at an event input. They are read-only.

TMS0 measure	3 register	(TMS0MR3)	<address< th=""><th>: H'0080</th><th>03C2></th></address<>	: H'0080	03C2>
TMS0 measure	2 register	(TMS0MR2)	<address< td=""><td>: H'0080</td><td>03C4></td></address<>	: H'0080	03C4>
TMS0 measure	1 register	(TMS0MR1)	<address< td=""><td>: H'0080</td><td>03C6></td></address<>	: H'0080	03C6>
TMS0 measure	0 register	(TMS0MR0)	<address< td=""><td>: H'0080</td><td>03C8></td></address<>	: H'0080	03C8>
TMS1 measure	3 register	(TMS1MR3)	<address< td=""><td>: H'0080</td><td>03D2></td></address<>	: H'0080	03D2>
TMS1 measure TMS1 measure	3 register 2 register	(TMS1MR3) (TMS1MR2)	<address <address< td=""><td>: H'0080 : H'0080</td><td>03D2> 03D4></td></address<></address 	: H'0080 : H'0080	03D2> 03D4>
TMS1 measure TMS1 measure TMS1 measure	3 register 2 register 1 register	(TMS1MR3) (TMS1MR2) (TMS1MR1)	<address <address <address< td=""><td>: H'0080 : H'0080 : H'0080</td><td>03D2> 03D4> 03D6></td></address<></address </address 	: H'0080 : H'0080 : H'0080	03D2> 03D4> 03D6>

D15 D0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 TMS0MR3 to TMS0MR0, TMS1MR3 to TMS1MR0

<at reset : Undefined>

D	Bit name	Function	R	W
0 to 15	TMS0MR3 to TMS0MR0	16-bit counter value		×
	TMS1MR3 to TMS1MR0			

Notes 1: These registers are read-only.

2: These registers are accessible only with halfwords.

10.5 TMS (16-bit timers related to input)

10.5.7 Operation of TMS measure inputs

(1) Summary of TMS measure inputs

In the TMS measure inputs, when a TMS counter is enabled (by a write of 1 to the corresponding enable bit of the TMS control registers with software), it starts up-counting. If an event input on the selected input event bus line is input to the counter, the counter value at that time is captured into the selected TMS measure register.

The counter is stopped simultaneously at a write of 0 to the corresponding count enable bit.

A TIN interrupt can be generated by an external measure signal input, as well as a TMS interrupt by a counter overflow.

10.5 TMS (16-bit timers related to input)

(2) Notes on use of TMS measure inputs

Notes on the use of the TMS measure inputs are as follows:

- If a measure event input and a write to the corresponding counter occur simultaneously at the same clock, the counter is rewritten; however, the measure register captures the counter value prior to the rewrite. Therefore, if the capture signal generates between after releasing reset and starting the counter, the counter value is undefined.
- If the capture signal generates between readouting to the counter and generating the count clock, the counter value before writing to the counter is stored.
- About readouting value from the counter, the current capture value always readout without generating of the count clock.

•Initial values is undefined.

Fig. 10.5.4 Notes on use of TMS measure inputs

10.6 TML(32-bit timers related to input)

10.6.1 Summary of TML

TML (Timer Measure Large) are the 32-bit timers related to input and are used to measure the input pulses of a total of 4 channels.

The specification of TML is shown in Table 10.6.1, and the TML block diagram is shown in Figure 10.6.1.

Table 10.6.1 Specification of TML (32-Bit Timers Related to Input)

Item	Description					
Number of channels	4 channels					
Input clock	one-half the clock frequency					
	(an input clock of 12.5 MHz at 25 MHz internal operation)					
Counters	32-bit up-counters					
Measure registers	32-bit measure registers					
Start of counter	A write to enable bit with software					

10.6.2 Summary of TML operation

When the TML counter is enabled (by a write of 1 to enable bit 15 of the TML control register with software), it starts up-counting. The counter is a 32-bit up-counter, and if a measure event signal is generated by an external input, its value at that time is captured into the selected TML measure register. The counter is stopped simultaneously at a write of 0 to the count enable bit.

The TML counter is not provided with counter overflow function; however, a TIN interrupt can be generated by the input of an external measure signal.

10.6.3 Register map related to TML registers

The register map related to the TML is shown in Figure 10.6.2.

Fig. 10.6.2 Register map related to TML

10.6 TML(32-bit timers related to input)

10.6.4 TML control register (TMLCR)

<Address : H'0080 03EB>

			<at :="" h'00="" reset=""></at>
D	Bit name	Function	R W
8	TMLSS0	0: External TIN23 input	
	(TML mesure 0 source select)	1: Input event bus line 0	
9	TMLSS1	0: External TIN22 input	
	(TML measure 1 source select)	1: Input event bus line 1	
10	TMLSS2	0: External TIN21 input	
	(TML measure 2 source select)	1: Input event bus line 2	
11	TMLSS3	0: External TIN20 input	
	(TML measure 3 source select)	1: Input event bus line 3	
12 to 14	Not assigned.		0 -
15	TMLCEN	0: Count stopped	
	(TML count enable)	1: Count enabled	

W = - : Write invalid

The TML control registers select the input event bus line, the counter clock source, and the counter operation of the TML counter each.

10.6.5 TML counter (TMLCTH, TMLCTL)

The TML counter is the 32-bit up-counter and, when enabled (by a write of 1 to bit 15 of the TML control register with software) starts up-counting. TMLCTH is the high-order 16 bits, and TMLCTL is the low-order 16 bits of the 32-bit counter.

The counter can be read during operation.

NOTE

TMLCTH and TMLCTL should be accessed with a word beginning at the address of TMLCTH.

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
			i			TN	ILCTH	l (high	order	16 bits)	i			
				4	5	6	7	8	9	10	11	12	13	14	D15

<at reset : Undefined>

D	Bit name	Function	R	W
0 to 15	TMLCTH	High-order 16 bits of 32-bit counter value		
	TMLCTL	Low-order 16 bits of 32-bit counter value		

Note : These register should be accessed with a word (32 bits) beginning at the address of TMLCTH.

10.6.6 TML measure registers (TMLMR3H to TMLMR0H, TMLMR3L to TMLMR0L)

The TML measure registers are the 32-bit registers that capture the contents of the TML counter at an event input. TMLMR3H to TMLMR0H are the high-order 16-bit, and TMLMR3L to TMLMR0L are the low-order 16-bit registers. These registers are read-only. The TML measure registers should be accessed with a word (32 bits) at a word boundary.

TML measure 3 register (TMLN	IR3H) <address :<="" th=""><th>H'0080 03F0></th></address>	H'0080 03F0>
TML measure 3 register (TMLN	IR3L) <address :<="" td=""><td>H'0080 03F2></td></address>	H'0080 03F2>
TML measure 2 register (TMLN	IR2H) <address :<="" td=""><td>H'0080 03F4></td></address>	H'0080 03F4>
TML measure 2 register (TMLN	IR2L) <address :<="" td=""><td>H'0080 03F6></td></address>	H'0080 03F6>
TML measure 1 register (TMLN	IR1H) <address :<="" td=""><td>H'0080 03F8></td></address>	H'0080 03F8>
TML measure 1 register (TMLN	IR1L) <address :<="" td=""><td>H'0080 03FA></td></address>	H'0080 03FA>
TML measure 0 register (TMLN	IROH) <address :<="" td=""><td>H'0080 03FC></td></address>	H'0080 03FC>
TML measure 0 register (TMLN	IROL) <address :<="" td=""><td>H'0080 03FE></td></address>	H'0080 03FE>

D0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 D15

		()	,	/		
	I I					

D0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 D15												D15			
TMLMR3L to TMLMR0L (low-order 16 bits)															

<at reset : Undefined>

D	Bit name	Function	R	W
0 to 15	TMLMR3H to TMLMR0H	High-order 16 bits of each 32-bit measure		×
		register value		
	TMLMR3L to TMLMR0L	Low-order 16 bits of each 32-bit measure		
		register value		

Notes 1: These registers are read-only.

2: These registers should be accessed with a word (32 bits) at a word boundary.

10.6 TML (32-Bit Timers Related To Input)

10.6.7 Operation of TML measure inputs

(1) Summary of TML measure inputs

In the TML measure inputs, when the TML counter is enabled (by a write of 1 to bit 15 of the TML control register with software), it starts up-counting. If an event input on the selected input event bus line is input to the counter, the counter value at that time is captured into the selected TML measure register.

The counter is stopped simultaneously at a write of 0 to the count enable bit.

The TML counter is not provided with counter overflow function; however, a TIN interrupt can be generated by the input of an external measure signal.

(2) Notes on use of TML measure inputs

Notes on the use of the TML measure inputs are as follows:

- If a measure event input and a write to the corresponding counter occur simultaneously at the same clock, the counter is rewritten; however, the measure register captures the counter value prior to the rewrite. Therefore, if the capture signal generates between after releasing reset and starting the counter, the counter value is undefined.
- If the capture signal generates between readouting to the counter and generating the count clock, the counter value before writing to the counter is stored.
- About readouting value from the counter, the current capture value always readout without generating of the count clock.

•Initial values is undefined.

Fig. 10.6.4 Notes on use of TML measure inputs

10.6 TML (32-Bit Timers Related To Input)

MEMORANDOM

CHAPTER 11 A-D CONVERTER

- 11.1 Summary of A-D converter11.2 Registers related to A-D converter
- 11.3 Functional description of A-D converter
- 11.4 Notes on use of A-D converter

11.1 Summary of A-D converter

11.1 Summary of A-D converter

The M32150F4TFP contains a successive-approximation A-D converter with 10-bit resolution. The converter is provided with 16 channels of analog inputs, AN0 to AN15, and can be enhanced to the maximum of 19 channels using an off-chip analog selector.

The A-D converter has the following conversion and operation modes:

(1) Conversion modes

• A-D conversion mode:

the normal mode used to convert analog input voltages to digital values.

• Comparator mode:

the mode used to compare the value of an analog input voltage with that of the predetermined comparison voltage to determine which is larger (in the single mode only).

(2) Operation modes

• Single mode:

the mode used to convert or comparate an analog input of a selected channel once (see note). • Scan modes:

the modes us

the modes used to convert analog input voltages of several selected channels (4, 8 or 16 channels) sequentially.

(3) Types of scan modes

• Single scan mode:

the mode used to scan selected channels only once.

• Continuous scan mode:

the mode used to scan selected channels continuously until the scan is stopped with software.

(4) Special operation modes

- Forced single mode during scan mode operation: the mode used to change a scan mode operation into the single mode forcibly.
- Scan modes succeeding to single mode operation:
- the mode used to start a scan mode consecutively after the single mode operation.
- Conversion restart: the mode used to restart the operating single mode or scan modes.

As the A-D conversion and the comparate rate, the normal or double rate is selected. An A-D conversion interrupt request or a DMA transfer request is generated after an A-D conversion, comparate, or single scan operation, or one cycle of the continuous scan mode is completed.

Note:

To distinguish the comparing operation in the comparator mode, which uses the A-D converter as a comparator, from that of the A-D converter in successive approximation, the former is called "comparate" in this manual.

11.1 Summary of A-D converter

The Summary of A-D converter is shown Table 11.1.1 and the diagram of A-D converter is shown Figure 11.1.1

Item	Description					
Analog input	16 channels (maximum of 19 channels by enhancement).					
A-D conversion method	Successive approxi	mation				
Resolution	10 bits					
Absolute accuracies (Conditions: Ta = 25 C,	Normal rate mode	±3 LSB				
AVCC = AVREF = 5.12 V)	Double rate mode ±3 LSB					
Conversion modes	A-D conversion mo	de and comparator	mode			
Operation modes	Single mode and s	can modes				
Scan modes	Single scan mode	Single scan mode and continuous scan mode				
Conversion start triggers	Software start	Writing a 1 to the bit	A-D conversion start			
	Hardware start	With MJT output event bus line 3				
		(see note 1)				
		By external ADTF	RG pin input			
Conversion rates	At single mode	Normal rate	299 × 1/f(BCLK)			
f(BCLK): Internal operating frequency	(the shortest time)	(see note 2)				
		Double rate	173 × 1/f(BCLK)			
	At comparator	Normal rate	47 × 1/f(BCLK)			
	mode					
	(the shortest time)	Double rate	29 ×1 /f(BCLK)			
Interrupt request generation function	At A-D conversion, comparate single scan, and one cycle of					
	continuous scan mode completed					
DMA transfer request generation functions	At A-D conversion, comparate single scan, and one cycle of					
	continuous scan mode completed					

Table 11.1.1 Summary of A-D converter

Notes 1: Refer to Chapter 10 "Multi-junction timers".

2: 1/f(BCLK) = 40 ns at BCLK = 25 MHz

1/f(BCLK) = 50 ns at BCLK = 20 MHz

A-D CONVERTER

11.1 Summary of A-D converter

11.1 Summary of A-D converter

11.1.1 Conversion modes

The A-D converter has two conversion modes, i.e. the A-D conversion and the comparator mode.

(1) A-D conversion mode

The A-D conversion mode is used to convert analog input voltages of the selected channels to digital values.

In the single mode, the A-D conversion of the channel selected with analog input pin select bits (D12 to D15) of single mode register 1 is performed.

In the scan modes, A-D conversion of the channels selected with scan mode register 1 is performed depending on the setting in scan mode register 0.

The conversion results are stored in the A-D data register (ADDTn) dedicated to each channel.

An A-D conversion interrupt request or DMA transfer request is generated when an A-D conversion is complete in the single mode or one cycle of the scan loop is complete in the scan Modes.

(2) Comparator mode

The comparator mode is used to comparate an analog input voltage of the selected channel with the value in the A-D successive approximation register (ADSAR) to determine which is larger.

The channel to be comparated is selected with analog input select bits (D12 to D15) of single mode register 1. The flag of the comparate result (1 or 0) is placed in the bit of the A-D comparate data register which corresponds to the selected channel.

Upon comparate completion an A-D conversion interrupt request or DMA transfer request can be generated.
11.1 Summary of A-D converter

11.1.2 Operation modes

The A-D converter has the single mode and the scan modes as its operation modes.

(1) Single mode

The single mode is used to convert or comparate an analog input of a selected channel once. Upon completion of the conversion, an A-D conversion interrupt request or DMA transfer request can be generated.

Fig. 11.1.2 Single mode operation (A-D conversion)

Fig. 11.1.3 Single mode operation (Comparate)

(2) Scan modes

The scan modes are used to convert analog input voltages of several selected channels (4, 8, or 16 channels) to digital values sequentially.

The scan modes comprise the single scan mode, which completes the A-D conversion by a 1-cyclic scan operation, and the continuous scan mode, which repeats scan operations until a write of 1 to the A-D conversion stop bit (D6) of scan mode register 1.

Each scan mode is selected by scan mode register 0, and the channels to be scanned are selected by scan mode register 1. However, the combinations and orders of the channels to be scanned are fixed; i.e. channels AN0 to AN3 are selected and scanned in that order at the 4-channel scan, AN0 to AN7 at the 8-channel scan, and AN0 to AN15 at the 16-channel scan.

Upon completion of a 1-cycle scan, an A-D conversion interrupt request or DMA transfer request can be generated.

Fig. 11.1.4 A-D conversion operation in scan modes (4-channel scan)

11.1 Summary of A-D converter

11.1 Summary of A-D converter

Scan loop select	Channels selected	Channels selected in	Registers storing
	in single scan mode	continuous scan mode	A-D conversion results
4-channel scan	AN0	AN0	A-D data register 0
	AN1	AN1	A-D data register 1
	AN2	AN2	A-D data register 2
	AN3	AN3	A-D data register 3
	complete	AN0	A-D data register 0
		: (Repeated until Ford	ced Stop) :
8-channel scan	AN0	AN0	A-D data register 0
	AN1	AN1	A-D data register 1
	AN2	AN2	A-D data register 2
	AN3	AN3	A-D data register 3
	AN4	AN4	A-D data register 4
	AN5	AN5	A-D data register 5
	AN6	AN6	A-D data register 6
	AN7	AN7	A-D data register 7
	complete	AN0	A-D data register 0
		: (Repeated until For	ced Stop) :
16-channel scan	AN0	AN0	A-D data register 0
	AN1	AN1	A-D data register 1
	AN2	AN2	A-D data register 2
	AN3	AN3	A-D data register 3
	AN4	AN4	A-D data register 4
	AN5	AN5	A-D data register 5
	AN6	AN6	A-D data register 6
	AN7	AN7	A-D data register 7
	AN8	AN8	A-D data register 8
	AN9	AN9	A-D data register 9
	AN10	AN10	A-D data register 10
	AN11	AN11	A-D data register 11
	AN12	AN12	A-D data register 12
	AN13	AN13	A-D data register 13
	AN14	AN14	A-D data register 14
	AN15	AN15	A-D data register 15

11.1.3 Special operation modes

(1) Forced single mode during scan mode operation

This special operation mode is used to change a scan mode operation into the single mode one of the selected channel forcibly. If the A-D conversion mode is selected as the conversion mode in the single mode, its conversion result is stored in the A-D data register dedicated to the selected channel, and if the comparator mode selected, the conversion result is stored in the A-D comparate data register. When the A-D conversion or comparate operation of the selected channel completes, the A-D conversion of the scan mode is restarted at the channel canceled previously.

To trigger the single mode conversion with software during a scan mode operation, a 0 is written to the A-D conversion start trigger select bit (D3) of single mode register 0 (software trigger selected); then writing a 1 to the A-D conversion start bit (D7) of the register starts the A-D conversion operation, while writing the comparison value to the A-D successive approximation register (ADSAR) during the scan mode starts the comparator operation.

To trigger the single mode conversion with hardware during a scan mode, a 1 is written to the A-D conversion start trigger select bit (D3) of single mode register 0 (hardware trigger selected); then either input selected with the hardware trigger select bit (D2) of the register (an ADTRG signal or output event bus line 3) is inputted to start the conversion.

When the conversion of the selected channel or the 1-cyclic scan is completed, an A-D conversion interrupt request or DMA transfer request is generated.

Fig. 11.1.6 Forced single mode during single scan mode operation

(2) Scan modes succeeding to single mode operation

This special operation mode is used to start a scan mode consecutively after the single mode operation.

To perform this operation with software, a 0 is written to the A-D conversion start trigger select bit (D3) of scan mode register 0 (software trigger selected); then a 1 to the A-D conversion start bit (D7) of the register during the single mode operation.

To perform this operation with hardware, a 1 is written to the A-D conversion start trigger select bit (D3) of scan mode register 0 (hardware trigger selected); then either input selected with the hardware trigger select bit (D2) of the register (an ADTRG signal or output event bus line 3) is inputted.

If hardware triggering is selected with the A-D conversion start trigger select bits of both mode registers, and a hardware trigger (an ADTRG signal or output event bus line 3) is inputted, the single mode conversion is executed, followed by the scan mode conversion.

When the single mode conversion of the selected channel or the 1-cyclic scan is completed, an A-D conversion interrupt request or DMA transfer request is generated.

Fig. 11.1.7 Single scan mode succeeding to single mode operation

(3) Conversion restart

This special operation mode is used to suspend the operation being performed in the single mode or a scan mode and to restart it at the beginning.

In the single mode, if a1 is rewritten to the A-D conversion start bit (D7) of single mode register 0, or a hardware trigger (an ADTRG signal or output event bus line 3) is inputted during the A-D conversion or comparate operation, the operation being performed is restarted.

In a scan mode, if a 1 is rewritten to the A-D conversion start bit (D7) of scan mode register 0, or a hardware trigger (an ADTRG signal or output event bus line 3) is inputted during the scan operation, the channel under conversion is discontinued to restart the conversion at channel 0.

Fig. 11.1.8 Restart of conversion in single mode operation

Fig. 11.1.9 Restart of conversion in scan operation

11.1 Summary of A-D converter

11.1.4 A-D conversion interrupt request and DMA transfer request

The A-D converter generates an A-D conversion interrupt request or DMA transfer request upon completion of an A-D conversion, comparate, or single scan operation, or one cycle of the continuous scan mode. Bits D4s of single mode register 0 and scan mode register 0 select either A-D conversion interrupt request or DMA transfer request in each mode.

Fig. 11.1.10 Switching of interrupt request and DMA transfer request

11.2 Registers related to A-D converter

The register map related to the A-D converter is shown Figure 11.2.1.

Fig. 11.2.1 Register map related to A-D converter

11.2.1 Single mode register 0 (ADSIM0)

<Address H'0080 0080>

			< at reset	4>	
D	Bit name	Function	lni.	R	W
0, 1	Not assigned.		0	0	-
2	ADSTRG	0: ADTRG signal input	0		
	(Hardware trigger select)	1: Output event bus line 3 signal			
3	ADSSEL	0: Software trigger	0		
	(A-D conversion start trigger select)	1: Hardware trigger			
4	ADSREQ	0: Interrupt request	0		
	(Interrupt request/DMA request selec	t)1: DMA transfer request			
5	ADSCMP	0: Under A-D conversion/comparate	e 1		×
	(A-D conversion/comparate complete) 1: A-D conversion/comparate comp	leted		
6	ADSSTP	0: Not used	0	0	
	(A-D conversion stop)	1: A-D conversion stopped			
7	ADSSTT	0: Not used	0	0	
	A-D conversion start)	1: A-D conversion started			

W = -: Write invalid

Single mode register 0 is used to specify the operation in the single mode (including the forced single mode during a scan mode operation).

(1) ADSTRG bit (Hardware trigger selection bit D2)

The ADSTRG bit selects either an external ADTRG signal input or an output event bus line 3 signal (MJT underflow) to begin A-D conversion with hardware. If the ADSSEL bit (see below) selects software trigger, the content of this bit is ignored.

When the ADTRG pin used, the completion of an A-D conversion with the ADTRG pin remaining "L" does not begin the next conversion.

(2) ADSSEL bit (A-D conversion start trigger select bit D3)

The ADSSEL bit selects either software trigger or hardware trigger to begin A-D conversion in the single mode.

If software trigger is selected, a write of 1 to the ADSSTT bit (see below) begins A-D conversion; if hardware trigger selected, the source selected with the ADSTRG bit begins A-D conversion.

(3) ADSREQ bit (Interrupt request/DMA transfer request select bit D4)

The ADSREQ bit selects whether to request an A-D conversion interrupt or a DMA transfer when a single mode operation (A-D conversion or comparate) is complete.

(4) ADSCMP bit (A-D conversion/comparate complete bit D5)

The ADSCMP bit is read-only. It contains a 1 after reset; it goes to 0 in the single mode operation (A-D conversion or comparate) and returns to 1 upon its completion.

This bit is also set to 1 if the A-D conversion or comparate operation is forced to stop by writing a 1 to the ADSSTT bit.

(5) ADSSTP bit (A-D conversion stop bit D6)

Writing a 1 to the ADSSTP bit during A-D conversion or comparate operation in the single mode stops the operation; however, the content of this bit is ignored in the single mode under sleeping or the scan modes.

The operation of A-D conversion stops immediately after a write to this bit, and if the contents of the A-D successive approximation register are read at this time, the value of the channel under conversion will be read (the value is not transferred to the dedicated A-D data register).

If the A-D conversion start bit and the A-D conversion stop bit are both set to 1s simultaneously, the A-D conversion stop bit is effective.

In the forced single mode during a scan mode operation (a special operation mode), writing a 1 to this bit during the single mode operation stops only the single mode to restart the scan mode operation.

(6) ADSSTT bit (A-D conversion start bit D7)

Writing a 1 to the ADSSTT bit starts A-D conversion when the ADSSEL bit selects software trigger. If the A-D conversion start bit and the A-D conversion stop bit are both set to 1s simultaneously, the A-D conversion stop bit is effective.

Writing a 1 again to this bit during the single mode conversion switches the operation to the conversion restart mode (a special operation mode) to restart the single mode conversion.

On the other hand, writing a 1 to this bit during a scan mode conversion switches the operation to the forced single mode during a scan mode operation (a special operation mode) and cancels the channel under conversion in the scan mode to start the single mode conversion. Upon completion of this conversion, the scan mode conversion is restarted at the channel that has been canceled.

11.2.2 Single mode register 1 (ADSIM1)

<Address H'0080 0081>

		< at	reset)>			
D	Bit name	Function	Ini.	R	W		
8	ADSMSL	0: A-D conversion mode	0				
	(A-D conversion mode select)	1: Comparator mode					
9	ADSSPD	0: Normal rate	0				
	(A-D conversion rate select)	1: Double rate					
10	ADSEXC	0: Analog enhancement function	0				
	(Analog enhancement function control)	not used					
		1: Analog enhancement function					
		control					
11	Not assigned.		0	0	-		
12 to 15	ANSEL	0 0 0 0: AN0 selected	0				
	(Analog input pin select)	0 0 0 1: AN1 selected					
		0 0 1 0: AN2 selected					
		0 0 1 1: AN3 selected					
		0 1 0 0: AN4 selected					
		0 1 0 1: AN5 selected					
		0 1 1 0: AN6 selected					
		0 1 1 1: AN7 selected					
		1 0 0 0: AN8 selected					
		1 0 0 1: AN9 selected					
		1 0 1 0: AN10 selected					
		1 0 1 1: AN11 selected					
		1 1 0 0: AN12 selected					
		1 1 0 1: AN13 selected					
		1 1 1 0: AN14 selected					
		1 1 1 1: AN15 selected					

W = -: Write invalid

Single mode register 1 is used to specify the operation in the single mode (including the forced single mode during a scan mode operation).

(1) ADSMSL bit (A-D conversion mode select bit D8)

In the single mode the ADSMSL bit selects one of two conversion modes; writing a 0 the A-D conversion mode, and writing a 1 the comparator mode.

(2) ADSSPD bit (A-D conversion rate select bit D9)

In the single mode the ADSSPD bit selects one of two A-D conversion rates; writing a 0 the normal rate, and writing a 1 the double rate.

(3) ADSEXC bit (Analog enhancement function control bit D10)

The ADSEXC bit is provided with the function of enhancing analog inputs using an off-chip analog selector (AD0 to AD14 inputs + 4 enhanced inputs = 19 channels maximum)

When this bit is cleared, the ANSEL bit selects one channel among the on-chip channels (channels 0 through 15) without channel enhancement.

When this bit is set to 1, channel enhancement is effective. In this case the analog input is fixed at analog input pin AN15, and its conversion result is stored in A-D data register 15. The values written to analog input pin select bits D14 and D15 (ANSEL 14 and 15) are placed on output pins P65/ ADSEL0 and P66/ADSEL1. One analog signal can be selected out of the four enhanced channels by the analog selector to input to the AN15 pin.

Fig. 11.2.2 Enhancement of analog inputs (4-channel enhancement)

(4) ANSEL bits (Analog input pin select bits D12 to D15)

The ANSEL bits select an analog input pin in the single mode. The channel selected with these bits can be converted or comparated. If read, the value previously written is read back. When enhancement function used, the values written to ANSEL bits D14 and D15 are placed on output pins P65/ADSEL0 and P66/ADSEL1 respectively (each pin goes "H" if the corresponding bit is a 1, and "L" if a 0).

11.2.3 Scan mode register 0 (ADSCM0)

<Address : H'0080 0084>

			< at	: H'04>	
D	Bit name	Function	lni.	R	W
0	Not assigned.		0	0	-
1	ADCMSL	0: Single shot mode	0		
	(Scan mode select)	1: Continuous mode			
2	ADCTRG	0: ADTRG signal input	0		
	(Hardware trigger select)	1: Output event bus line 3			
3	ADCSEL	0: Software trigger	0	0	-
	(A-D conversion start trigger select)	1: Hardware trigger			
4	ADCREQ	0: Interrupt request	0		
	(Interrupt request/DMA request select)	1: DMA transfer request			
5	ADCCMP	0: Under A-D conversion	1	0	-
	(A-D conversion complete)	1: A-D conversion completed			
6	ADCSTP	0: Not used	0	0	
	(A-D conversion stop)	1: A-D conversion stopped			
7	ADCSTT	0: Not used	0	0	
	(A-D conversion start)	1: A-D conversion started			

W = -: Write invalid

Scan mode register 0 is used to specify the operation in the scan mode.

(1) ADCMSL bit (Scan mode select bit D1)

The ADCMSL bit selects either the single scan or the continuous scan mode.

Writing a 0 to this bit selects the single scan mode; the channels selected with the ANSCAN bits (D12 to D15) of scan mode register 1 are sequentially A-D converted, and after one cycle of the scan the conversion is stopped.

Writing a 1 to this bit selects the continuous scan mode; the selected channels are scanned continuously until a 1 is written to the ADCSTP bit (see below) to stop the operation.

(2) ADCTRG bit (Hardware trigger select bit D2)

The ADCTRG bit selects either an external ADTRG signal input or an output event bus line 3 signal (MJT underflow) to begin A-D conversion with hardware. If the ADSSEL bit (D3) of single mode register 0 selects software trigger, the content of this bit is ignored.

When the ADTRG pin used, the completion of an A-D conversion with the ADTRG pin remaining LOW does not begin the next conversion.

(3) ADCSEL bit (A-D conversion start trigger select bit D3)

The ADCSEL bit selects either software trigger or hardware trigger to begin A-D conversion in the scan modes.

If software trigger is selected, a write of 1 to the ADCSTT bit (see below) begins A-D conversion; if hardware trigger selected, the source selected with the ADCTRG bit begins A-D conversion.

(4) ADCREQ bit (Interrupt request/DMA transfer request select bit D4)

The ADCREQ bit selects whether to request an A-D conversion interrupt or a DMA transfer when one cycle of a scan mode is complete.

(5) ADCCMP bit (A-D conversion complete bit D5)

The ADCCMP bit is read-only. It contains a 1 after reset; it goes to 0 in the scan mode operations and returns to 1 when the single scan mode is completed or the continuous scan mode is stopped by writing a 1 to the ADCSTT bit (see below).

(6) ADCSTP bit (A-D conversion stop bit D6)

Writing a 1 to the ADCSTP bit during A-D conversion in a scan mode stops the operation; however, the content of this bit is ignored in the scan modes under sleeping or the single mode.

The operation of A-D conversion stops immediately after a write to this bit, and the channel under conversion is canceled. The value of the channel is not transferred to the dedicated A-D data register.

If the A-D conversion start bit and the A-D conversion stop bit are both set to 1s simultaneously, the A-D conversion stop bit is effective.

(7) ADCSTT bit (A-D conversion start bit D7)

Writing a 1 to the ADCSTT bit starts the A-D conversion of a scan mode when the ADCSEL bit selects software trigger.

If the A-D conversion start bit and the A-D conversion stop bit are both set to 1s simultaneously, the A-D conversion stop bit is effective.

Writing a 1 again to this bit during the scan mode conversion switches the operation to the conversion restart mode (a special operation mode) to restart the scan mode conversion specified by scan mode 0 and 1 registers.

On the other hand, writing a 1 to this bit during the single mode conversion switches the operation to the scan modes succeeding to the single mode operation (a special operation mode), and a scan mode conversion is started upon completion of the single mode operation.

11.2.4 Scan mode register 1 (ADSCM1)

<Address : H'0080 0085>

			< at reset : H'00				
D	Bit name	Function	Ini.	R	W		
8	Not assigned.		0	0	-		
9	ADSSPD	0: Normal rate	0				
	(A-D conversion rate select)	1: Double rate					
10, 11	Not assigned.		0	0	-		
12 to 15	ANSCAN	< At write >	0				
	(Scan Loop select)	0 1 X X: 4-channel scan					
		1 0 X X: 8-channel scan					
		1 1 X X: 16-channel scan					
		0 0 X X: 16-channel scan					
		(Writes invalid to D14 and D15)					
		< At read during conversion >					
		0 0 0 0: AN0 being converted					
		0 0 0 1: AN1 being converted					
		0 0 1 0: AN2 being converted					
		0 0 1 1: AN3 being converted					
		0 1 0 0: AN4 being converted					
		0 1 0 1: AN5 being converted					
		0 1 1 0: AN6 being converted					
		0 1 1 1: AN7 being converted					
		1 0 0 0: AN8 being converted					
		1 0 0 1: AN9 being converted					
		1 0 1 0: AN10 being converted					
		1 0 1 1: AN11 being converted					
		1 1 0 0: AN12 being converted					
		1 1 0 1: AN13 being converted					
		1 1 1 0: AN14 being converted					
		1 1 1 1: AN15 being converted					

W = -: Write invalid

Scan mode register 1 is used to specify the operation in the scan mode.

(1) ADCSPD bit (A-D conversion rate select bit D9)

In the scan modes the ADCSPD bit selects one of two A-D conversion rates; writing a 0 the normal rate, and writing a 1 the double rate.

(2) ANSCAN bits (Scan loop select bit D12 to D15)

The ANSCAN bits specify the number of channels to be scanned in the scan modes. Writing into D14 and D15 is invalid.

If read during a scan operation, these bits indicate the status of the channel under conversion; if read during the single mode, the bits are read back as B'0000.

During the single mode conversion in the forced single mode during a scan mode operation (a special operation mode), these bits are read back as the value of the channel the scan of which has been canceled.

11.2 Registers related to A-D converter

11.2.5 A-D successive approximation register (ADSAR)

<Address : H'0080 0088>

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
		1				ADSAR									

< at reset : Ini.>

D	Bit name	Function	lni.	R	W
0 to 5	Not assigned.		0	0	-
6 to 15	ADSAR	A-D successive approximation	?		
		value(A-D conversion mode)			
	(A-D successive approximation value/	Comparison value			
	Comparison value)	(comparator mode)			
			W =	-: Wri	te invalid

Note : The ADSAR register should be accessed with half words. If a byte is written to either half of a half word, indeterminate data is written to the other half of it.

The A-D successive approximation register (ADSAR) is the register from which the A-D conversion result is read out in the A-D conversion mode and into which the comparison value is written in the comparate mode.

The A-D conversion mode uses successive approximation as its conversion method.

In this method, an analog input voltage is compared bit by bit with reference voltage AVREF at the uppermost bit, and the result is loaded in bits D6 to D15 of the ADSAR register. When the A-D conversion of a channel is complete, the register value is transferred to the dedicated A-D data register (ADDTn). The value read from the ADSAR register during the A-D conversion will be the one on the way of conversion.

In the comparator mode, the comparison value (comparate comparison voltage) is written to this register. As the value written, the comparator starts to compare the comparison value with the voltage of the analog input pin selected by single mode register 1. When the comparate is complete, the result is stored in the A-D comparate data register (ADCMP).

The comparison value to be written to the ADSAR register in the comparate mode is given by the following equation:

Comparison Value = H'3FF × ______Comparate Comparison Voltage [V]

AVREF Input Voltage [V]

11.2 Registers related to A-D converter

11.2.6 A-D comparate data register (ADCMP)

<Address : H'0080 008C>

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
AD	AD	AD	AD	AD	AD										
CMP0	CMP1	CMP2	CMP3	CMP4	CMP5	CMP6	CMP7	CMP8	CMP9	CMP10	CMP11	CMP12	CMP13	CMP14	CMP15

< at reset : Undefined >

D	Bit name	Function	Ini.	R	W
0 to 15	ADCMP0 to ADCMP15	0: Analog input voltage > comparison voltage	?		-
	(see note 2)	1: Analog input voltage < comparison voltage			
	(Comparate result flag)				

W = -: Write invalid

Notes 1: The ADCMP register should be accessed with halfwords.

2: Bits 0 to bits 15 dedicated to channel 0 to channel 15 respectively in the comparator mode.

When the comparate mode is selected with the ADSMSL bit of single mode register 1, the analog input value of the selected channel is compared with the value written to the ADSAR register, and the result is stored in the dedicated bit of this register.

Each bit of this register is read as 0 if the analog input voltage > the comparison voltage, and as 1 if the analog input voltage < the comparison voltage.

11.2.7 A-D data register 0 to A-D data register 15 (ADDT0 to ADDT15)

A-D	data reg	gister	0 (ADDT0)	<address :<="" td=""><td>H'0080</td><td>0090></td></address>	H'0080	0090>
A-D	data reg	gister	1 (ADDT1)	<address :<="" td=""><td>H'0080</td><td>0092></td></address>	H'0080	0092>
A-D	data reg	gister	2 (ADDT2)	<address :<="" td=""><td>H'0080</td><td>0094></td></address>	H'0080	0094>
A-D	data reg	gister	3 (ADDT3)	<address :<="" td=""><td>H'0080</td><td>0096></td></address>	H'0080	0096>
A-D	data reg	gister	4 (ADDT4)	<address :<="" td=""><td>H'0080</td><td>0098></td></address>	H'0080	0098>
A-D	data reg	gister	5 (ADDT5)	<address :<="" td=""><td>H'0080</td><td>009A></td></address>	H'0080	009A>
A-D	data reg	gister	6 (ADDT6)	<address :<="" td=""><td>H'0080</td><td>009C></td></address>	H'0080	009C>
A-D	data reg	gister	7 (ADDT7)	<address :<="" td=""><td>H'0080</td><td>009E></td></address>	H'0080	009E>
A-D	data reg	gister	8 (ADDT8)	<address :<="" td=""><td>H'0080</td><td><0A00</td></address>	H'0080	<0A00
A-D	data reg	gister	9 (ADDT9)	<address :<="" td=""><td>H'0080</td><td>00A2></td></address>	H'0080	00A2>
A-D	data reg	gister	10 (ADDT10)	<address :<="" td=""><td>H'0080</td><td>00A4></td></address>	H'0080	00A4>
A-D	data reg	gister	11 (ADDT11)	<address :<="" td=""><td>H'0080</td><td>00A6></td></address>	H'0080	00A6>
A-D	data reg	gister	12 (ADDT12)	<address :<="" td=""><td>H'0080</td><td><8A00</td></address>	H'0080	<8A00
A-D	data reg	gister	13 (ADDT13)	<address :<="" td=""><td>H'0080</td><td><aa00< td=""></aa00<></td></address>	H'0080	<aa00< td=""></aa00<>
A-D	data reg	gister	14 (ADDT14)	<address :<="" td=""><td>H'0080</td><td><00AC></td></address>	H'0080	<00AC>
A-D	data reg	gister	15 (ADDT15)	<address :<="" td=""><td>H'0080</td><td>00AE></td></address>	H'0080	00AE>

D0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 D15

ADDT

< at reset : Ini.>

					-
D	Bit name	Function	Ini.	R	W
0 to 5	Not assigned.		0	0	-
6 to 15	ADDT (A-D data)	A-D conversion result	?		-

W = -: Write invalid

Note: The ADDT0 to ADDT15 registers should be accessed with half words.

In the single mode, the result of A-D conversion of the selected channel is stored in the dedicated A-D data register.

In the single/continuous scan mode, the contents of the A-D successive approximation register are transferred to the dedicated A-D data register at each time the A-D conversion of a selected channel is complete.

Each A-D data register retains the latest conversion result until the next conversion result is transferred, so that the latest result can be read back at any time.

11.3 Functional description of A-D converter

11.3 Functional description of A-D converter

11.3.1 Analog input voltage

Since the A-D converter uses 10-bit successive approximation, the real analog input voltage can be calculated from the result of the A-D conversion (a digital value) with the following equation:

A-D conversion result × AVREF input vlotage [V]

Analog input voltage [V] =

1024

The A-D converter is of 10 bits and has a resolution of 1024. Because the voltage inputted to the AVREF pin is used as the reference voltage of the converter, an accurate, stable constant-voltage power supply should be applied to this pin. Also, the power supply to analog circuitry and the wiring connected to the ground pins (AVCC and AVSS) should be isolated from the power supply to digital circuitry with care fully taken to prevent noise.

For the accuracy of conversion, refer to Section 11.3.5 "Accuracy in A-D conversion".

Fig. 11.3.1 Configuration of successive-approximation A-D conversion unit

11.3 Functional description of A-D converter

11.3.2 Successive-approximation A-D conversion

The A-D converter starts the A-D conversion with an A-D conversion start trigger (by software or hardware), performing the following operations automatically:

- ① Clearing the A-D conversion/comparate complete bit (D5) of single mode register 0 in the single mode or the A-D conversion complete bit (D5) of scan mode register 0 in the scan modes
- 0 Clearing the contents of the A-D successive approximation register to H'0000
- ③ Setting the uppermost bit (D6) of the A-D successive approximation register to 1 Inputting comparison voltage Vref (see note) from the D-A converter to the comparator
- ⑤ Comparing analog input voltage VIN with comparison voltage Vref and storing the following datain bit D6 of the A-D successive approximation register:
 - a 1 is stored if Vref < VIN, or
 - a 0 is stored if Vref > VIN
- » Repeating the above operations of 3 through 5 to store data in bits D7 to D15 successively
- D Assuming the value stored in the A-D successive approximation register as the A-D conversion result when data is stored in bit D15

Fig. 11.3.2 Changes of A-D successive approximation register contents in A-D conversion

Note:

Comparison voltage Vref inputted from the D-A converter to the comparator depends on the contents of A-D successive approximation register ADSAR. Comparison voltage Vref is given by the following equations:

- If ADSAR register contents are 0,
- Vref[V] = 0
- If ADSAR register contents are 1 to 1023, Vref [V] = (AVREF/1024) × (ADSAR register contents - 0.5)

11.3 Functional description of A-D converter

The comparison result is transferred to the A-D data register (ADDTn) dedicated to the converted channel.

The procedure of successive-approximation A-D conversion in each operation mode is described below.

(1) Single mode

When data is stored in all bits of the ADSAR register, the conversion stops. The contents of the ADSAR register (the conversion result) are transferred to bits 0 to 15 of the A-D data register dedicated to the converted channel.

(2) Single scan mode

When data is stored in all bits of the ADSAR register for one of the selected channels, the contents of the ADSAR register are transferred to bits 0 to 15 of the A-D data register dedicated to that channel, and the above-mentioned operations @ through D are repeated for the next selected channel. In this mode, the conversion operation stops when the A-D conversion of one scan loop is complete.

(3) Continuous scan mode

When data is stored in all bits of the ADSAR register for one of the selected channels, the contents of the ADSAR register are transferred to bits 0 to 15 of the A-D data register dedicated to that channel, and the above-mentioned operations @ through D are repeated for the next selected channel. In this mode, the conversion is continuously performed until the scanning is forced to stop by writing a 1 to the A-D conversion stop bit (D6 of scan mode register 0).

11.3 Functional description of A-D converter

11.3.3 Comparator operation

When the comparator mode selected (in the single mode only), the A-D converter serves as the comparator that compares an analog input voltage with the comparison voltage.

Writing the comparison value to the ADSAR register begins the comparate operation between the analog input voltage of the pin (channel) selected with bits 12 to 15 of single mode register 1 and the value written to the ADSAR register. When comparate begins, the comparator performs the following operations automatically:

- ① Clearing the A-D conversion/comparate complete bit (D5) of single mode register 0 in the single mode or the A-D conversion complete bit (D5) of scan mode register 0 in the scan modes
- 2 Inputting comparison voltage Vref (see note) from the D-A converter to the comparator
- ③ Comparing analog input voltage VIN with comparison voltage Vref and storing the following data in bit D15 (the comparate result flag dedicated to the selected channel) of the A-D comparate data register:

a 0 is stored if Vref < VIN, or

a 1 is stored if Vref > VIN

Stopping the comparate operation when data is stored

The comparate comparison result is transferred to the bit dedicated to the selected channel of the A-D comparate data register.

Note:

Comparison voltage Vref inputted from the D-A converter to the comparator depends on the contents of A-D successive approximation register. Comparison voltage Vref is given by the following equations:

- If ADSAR register contents are 0, Vref[V] = 0
- If ADSAR register contents are 1 to 1023, Vref [V] = (AVREF/1024) × (ADSAR register contents - 0.5)

11.3 Functional description of A-D converter

11.3.4 Calculation of A-D conversion time

The A-D conversion time is expressed by the sum of the dummy cycle time and the real execution cycle time. Each time necessary for calculating the conversion time is described below.

① Start Dummy Time

The period of time from the execution of an A-D conversion start instruction by the CPU to the beginning of the A-D conversion by the A-D converter

- ② A-D Conversion Execution Cycle Time
- ③ Comparate Execution Cycle Time Stop Dummy Time The period of time from the ending of the A-D conversion by the A-D converter to the stable reading of the conversion result from the dedicated A-D data register by the CPU
- ⑤ Dummy Time between Scans The period of time from the completion of the A-D conversion for one of the selected channels to the beginning of the conversion for the next selected channel in the single scan/continuous scan mode.

The A-D conversion time is given as follows:

- A-D conversion time = start dummy time + execution cycle time
- (+ dummy time between scans + execution cycle time
- + dummy time between scans + execution cycle time
- + dummy time between scans + execution cycle time)
- + stop dummy time

Note:

The times to be added to the conversion of the second and following channels are represented in parentheses.

Fig. 11.3.3 Conceptional diagram of A-D conversion time

11.3 Functional description of A-D converter

Table 11.3.1	Number of cor	nversion clo	ocks				Unit: BCLK	
Transfer	Start dummies			A-D conversion	Comparate	Dummy		
rate				execution cycle	execution	dummy	between	
					cycle		scans	
	(see note 1)(se	e note 2)(s	ee note 3)				(see note 4)	
Normal rate	4	4	4	294	42	1	4	
Double rate	4	4	4	168	24	1	4	

Notes 1: By software trigger

2: By hardware trigger

3: By writing to A-D successive approximation register (in the comparate mode)

4: Added to the execution time of each channel only in the scan operation

Table 11.3.2 A-D	conversion time (l	n total)		Unit: BCLK
Conversion	Conversion rate	Conversion mode		Conversion
started by		(see note 1)		time
				[BCLK]
Software trigger	Nomal rate	Single shot mode		299
(see note 2)		Scan single shot/	4-channel scan	1193
		continuous mode	8-channel scan	2385
			16-channel scan	4769
		Comparate mode		47
	Double rate	Single shot mode		173
		Scan single shot/	689	
		continuous mode	8-channel scan	1377
			16-channel scan	2753
		Comparate mode		27
Hardware trigger	Nomal rate	Single shot mode		299
(see note 3)		Scan single shot/	4-channel scan	1193
		continuous mode	8-channel scan	2385
			16-channel scan	4769
		Comparate mode		47
	Double rate	Single shot mode		173
		Scan single shot/	4-channel scan	689
		continuous mode	8-channel scan	1377
			16-channel scan	2753
		Comparate mode		27

- **Notes 1:** In the single mode/comparator mode, the A-D conversion/comparate times for one channel shown. In the single scan/continuous scan mode, the A-D conversion times for one scan loop (cycle) shown.
 - **2:** The period of time shown from the end of a write cycle to single mode register 0 to the generation of an A-D conversion complete interrupt request.
 - **3**: The period of time shown from inputting an "L" signal to the ADTRG pin or triggering output event bus line 3 to the generation of an A-D conversion complete interrupt request.

11.3 Functional description of A-D converter

11.3.5 Accuracy of A-D conversion

Absolute accuracy is used to evaluate the accuracy of an A-D converter. It is the difference in LSB between the output code obtained by converting an analog input voltage to the digital value and the one expected of the A-D converter with an ideal conversion characteristics.

Each analog input voltage at accuracy measurement is assumed to be the mid point of the voltage range in which the A-D converter with an ideal characteristics outputs the constant output code. If VREF is 5.12 V, for example, the width of LSB of a 10-bit A-D converter is 5 mV, and 0 mV, 5 mV, 10 mV, 15 mV, 20 mV, 25 mV, etc. are selectable as the mid points of analog input voltages.

An absolute accuracy of ± 3 LSB to analog input voltagein the A-D converter of the M32150F4TFP indicates that if an input voltage is 25 mV, for example, the real A-D conversion result is within a range of H'002 to H'008 while the output code expected of an ideal A-D converter would be H'005. Note that absolute accuracy includes zero error and full-scale error.

When the A-D converter is used in practice, analog input voltages are allowed to be within a range of AVSS to AVREF; however, resolution is decreases as the AVREF voltage is lowered. The output code of the analog input voltages ranging from AVREF to AVCC is fixed to H'3FF.

Fig. 11.3.4 Ideal A-D conversion characteristics to analog input voltage of 10-bit A-D converter

11.3 Functional description of A-D converter

Fig. 11.3.5 Absolute accuracy of A-D conversion

11.4 Notes on use of A-D converter

11.4 Notes on use of A-D converter

• Forced to stop during scanning operation

If A-D conversion is forced to stop by setting the A-D conversion stop bit (D6) of scan mode register 0 during the scan mode operation, the last conversion result transferred prior to the forced stop will be read out when the contents of the A-D scan data register dedicated to the channel under conversion is read.

• ADTRG signal and I/O port

If an ADTRG signal input is selected as a hardware trigger, the ADTRG pin should not be used as I/O port pin (P67).

• Change of registers related to A-D conversion

The contents of the A-D conversion interrupt register, the single and scan mode registers (except A-D conversion stop bits), and the A-D successive approximation register should be changed while A-D conversion is stopped, or the converter be restarted after the contents are changed. If they are changed during A-D conversion, conversion results can not be guaranteed.

• Deal of analog input signal

This A-D converter is not provided with a sample and hold circuit; therefore, analog input levels should be fixed during A-D conversion.

CHAPTER 12 Serial I/O

- 12.1 Summary of serial I/O
- 12.2 Registers related to serial I/O
- 12.3 Transmission in CSIO Mode
- 12.4 Reception in CSIO Mode
- 12.5 Notes on Use of CSIO Mode
- 12.6 Transmission in UART Mode
- 12.7 Reception in UART Mode
- 12.8 Notes on Use of UART Mode

12.1 Summary of serial I/O

12.1 Summary of serial I/O

The M32150F4TFP is provided with two channels of serial I/O, SIO0 and SIO1 (both are the same except for DMA transfer request generation function, and the CSIO (synchronous serial I/O) mode and the UART (asynchronous serial I/O) mode are selectable for each channel as the transmission modes.

•CSIO mode (Synchronous serial I/O)

In the CSIO mode, the transmitter and the receiver communicate with each other synchronized to the same transfer clock. The transfer data length in this mode is fixed 8 bits.

• UART mode (Asynchronous serial I/O)

In the UART mode, communication is carried out asynchronously. Either 7 bits or 8 bits is selected as the transfer data length.

The use of the on-chip DMAC in serial communications will facilitate high-speed transmission as well as reduce CPU service overhead in communications.

The summary of serial I/O are shown in Tables 12.1.1 to 12.1.3 and Figure 12.1.1.

Item	Description				
Number of channels	2 channels				
Clock	Internal clock or external clock (see note)				
Transfer mode	Transmitter half-duplex transmission, receiver half-duplex transmission,				
	or transmitter/receiver full duplex transmission				
BRG count source	f(BCLK), f(BCLK)/8, f(BCLK)/32, or f(BCLK)/256				
	(When internal clock selected)				
Data formats	CSIO mode: data length = fixed 8 bits				
	order of transfer = LSB first or MSB first selectable				
	UART mode: start bit = 1 bit				
	character length = 7 bits/8 bits				
	parity bit = with/without				
	(odd or even number selectable if with a parity bit)				
	stop bit = 1 bit/2 bits				
	order of transfer = fixed LSB first				
Baud rates	CSIO mode: 190 bps to 2 Mbps (at f(BCLK) = 25 MHz)				
	UART mode: 23 bps to 195 Kbps (at f(BCLK) = 25 MHz)				
Error detection	CSIO mode: only overrun error				
	UART mode: overrun error, parity error, and framing error				
	(generation of any error is indicated by the error sum bit)				

Table 12.1.1 Outline of serial I/O

Note: In either the CSIO or the UART mode, the maximum input frequency of the external clock is one-sixteenth the f(BCLK) frequency.

12.1 Summary of serial I/O

Table 12.1.2 Interrupt request generation function in serial I/O

Interrupt request in serial I/O	ICU interrupt source	Input type of ICU source
SIO0 transmit complete (transmit shift register empty) or transmit buffer empty interrupt	SIO0 transmit interrupt	Edge-trigger
SIO0 receive complete or receive error interrupt	SIO0 receive interrupt	Edge-trigger
SIO1 transmit complete (transmit shift register empty)	SIO1 transmit interrupt	Edge-trigger
or transmit buffer empty interrupt		
SIO1 receive complete or receive error interrupt	SIO1 receive interrupt	Edge-trigger

Table 12.1.3 DMA transfer request generation functions in serial I/O

DMA transfer request in serial I/O	DMAC input channel
SIO0 transmit buffer empty	Channel 3
SIO1 receive complete	Channel 3
SIO0 receive complete	Channel 4

Note: The SIO1 channel is not provided with the DMA transfer request generation function by its transmit buffer empty.

Fig.12.1.1 Block diagram of SIOn (n = 0, 1)

12.2 Registers related to serial I/O

12.2 Registers related to serial I/O

The register map related to the serial I/O is shown Figure 12.2.1.

Addre	ess	+0 number D0	D7	D8	+1 number	D15
н'0080	0100	5	SIO0 moo (SON	de register MOD)		
н'0080	0102	SIO0 control register 0 (S0CNT0)		SIC	0 control register (S0CNT1)	1
н'0080	0104	SIO0 baud rate registe (S0BAUR)	er	SIO0 i	nterrupt mask regi (S0MASK)	ster
н'0080	0106	reserved (see note	2)	SIO0 ti	ansmit buffer reg (S0TXB)	jister
н'0080	0108	SIO0 status register (S0STAT)		SIO0	receive buffer regis (S0RXB)	ster
н'0080	0110	~ 	SIO1 mode register (S1MOD)			
н'0080	0112	SIO1 control register 0 (S1CNT0)	SIO1 control register 0 (S1CNT0) (S1CNT1)			
н'0080	0114	SIO1 baud rate registe (S1BAUR)	er	SIO1 i	nterrupt mask regi (S1MASK)	ister
н'0080	0116	reserved (see note 2	2)	SIO1 ti	ansmit buffer reg (S1TXB)	jister
н'0080	0118	SIO1 status register (S1STAT)		SIO1	receive buffer regi (S1RXB)	ster
	No	t es 1: These registers are a 2: These registers are re	ccessibl	e with eithe and read/w	r bytes or halfwo rite inhibited.	ords.

Fig. 12.2.1 Register map related to serial I/O

12.2 Registers related to serial I/O

12.2.1 SIOn mode register (n = 0, 1)

SIO0 mode register (S0MOD) SIO1 mode register (S1MOD) <Address : H'0080 0100> <Address : H'0080 0110>

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
			UCS	PEN	PSEL	STB	CHL					LMF	CI) VIC	CKS

			< at reset	: Une	defined>
D	Bit name	Function	Ini.	R	W
0 to 2	Not assigned.		0	0	-
3	UCS	0: UART mode	0		
	(UART/CSIO select)	1: CSIO mode			
4	PEN (Parity enable/disable)	0: Parity disabled	0		
	Used only in UART mode	1: Parity enabled			
5	PSEL (Parity select)	0: Even parity	0		
	Used only in UART mode	1: Odd parity			
6	STB (Stop-bit length select)	0: 1 stop bit	0		
	Used only in UART mode	1: 2 stop bits			
7	CHL (Character length select)	0: 7-bit character	0		
7	Used only in UART mode,	1: 8-bit character			
	set to 0 when parity disabled selected				
8 to 11	Not assigned.		0	0	-
12	LMF (LSB/MSB first select)	0: LSB first	0		
8 to 11 12	*Valid only in CSIO mode	1: MSB first			
	(set to 0 in UART mode)				
13, 14	CDIV (Baud rate generator count	00: f(BCLK)	0		
	source select)	01: f(BCLK)/8			
	Used only when internal clock	10: f(BCLK)/32			
	selected	11: f(BCLK)/256			
15	CKS	0: Internal clock	0		
	(Internal/external clock select)	1: External clock			

W = -: Write invalid

Note: These registers are accessible with either bytes or halfwords.

12.2 Registers related to serial I/O

Each SIO mode register consists of the bits specifying the operation modes and data formats of serial I/O and the functions used in communications.

Note that each register should be written prior to beginning serial I/O operation. If the contents of the register is to be rewritten after transmission/reception begins, rewrite the register under the conditions that the transmission/reception is complete and that further communication is disabled (by clearing to 0 the transmit enable and receive enable bits of the SIO control register).

(1) UCS (UART/CSIO function select bit D3)

The UCS bit is used to specify the mode of SIO. If cleared to 0, this bit selects the UART mode, and if set to 1, the CSIO mode.

(2) PEN (Parity enable/disable bit D4)

The PEN bit is effective only in the UART mode. If set to 1, this bit puts the parity bit after a character of the transmit data as well as checks the parity of the received data.

(3) PSEL (Parity select bit D5)

The PSEL bit is effective only in the UART mode. If parity is enabled (bit D4 is a 1), a 0 on this bit selects the even parity, and a 1 the odd parity.

When "parity enable" and "even parity" are selected, for example, the parity bit will go to a 1 automatically if the number of 1s in transmit data is odd to make the number of 1s even in the whole transmitted data including the parity bit, and it will go to a 0 if the number of 1s in the transmit data is even.

The receiver checks the number of 1s in the received data including the parity bit, and if the parity of the number is different from the defined one, a parity error will be generated.

If parity enable/disable bit D4 is cleared to 0 (disable), the content of this bit is ignored.

(4) STB (Stop-bit length select bit D6)

The STB bit, effective only in the UART mode, specifies the stop bit length indicating the end of transmit data; 1 stop bit selected if this bit is cleared to 0, and 2 stop bits if set to 1.

(5) CHL (Character length select bit D7)

The CHL bit, effective only in the UART mode, specifies the character length of transmit data; the 7-bit character selected if this bit is cleared to 0, and the 8-bit character if set to 1.

(6) LMF (LSB/MSB first select bit D12)

The LMF bit, effective only in the CSIO mode, specifies the transfer order of transmit data; LSB first selected if this bit is cleared to 0, and MSB first if set to 1. This bit should be fixed at 0 in the UART mode.

Fig. 12.2.2 Data transfer order in CSIO mode

(7) CDIV (Baud rate generator count source select bits D13, D14)

The CDIV bits are effective only when the internal clock is selected. If this clock is used as the transfer clock (bit D15 below is a 0), these bits specify the count source of the baud rate generator (BRG).

D13	D14	Baud rate generator count source	At f(BCLK) = 25 MHz
0	0	f(BCLK) selected	25 MHz
0	1	f(BCLK)/8 selected	3.125 MHz
1	0	f(BCLK)/32 selected	781.25 kHz
1	1	f(BCLK)/256 selected	97.65625 kHz

Table 12.2.1	Setting	of baud	rate	generator	count	source
--------------	---------	---------	------	-----------	-------	--------

(8) CKS (Internal/external clock select bit D15)

The CKS bit specifies the clock used for transfer; the internal clock selected if this bit is cleared to 0, and the external clock if set to 1.
12.2 Registers related to serial I/O

12.2.2 SIOn control register 0 (n = 0, 1)

SIO0 SIO1	control control	register register	0 (S0 0 (S1	OCNTO) ICNTO)		<addres <addres< th=""><th>s : H'00 s : H'00</th><th>)80 0102)80 0112</th><th>?> ?></th></addres<></addres 	s : H'00 s : H'00)80 0102)80 0112	?> ?>
	D0	1	2	3	4	5	6	D7	
				I	RSCL	TSCL	RXEN	TXEN	

< at reset : H'00>

	i anoton	R	VV
Not assigned.		0	-
RSCL (Receiver initialize)	0: Not used	0	
	1: Bits 1-5 of each SIO status		
	register initialized		
TSCL (Transmitter initialize)	0: Not used	0	
	1: Bits 6 and 7 of each SIO status		
	register initialized		
RXEN (Receive enable)	0: Receive disabled		
	1: Receive enabled		
TXEN (Transmit enable)	0: Transmit disabled		
	1: Transmit enabled		
	Not assigned. RSCL (Receiver initialize) TSCL (Transmitter initialize) RXEN (Receive enable) TXEN (Transmit enable)	Not assigned. RSCL (Receiver initialize) 0: Not used 1: Bits 1-5 of each SIO status register initialized TSCL (Transmitter initialize) 0: Not used 1: Bits 6 and 7 of each SIO status register initialized RXEN (Receive enable) 0: Receive disabled 1: Receive enabled TXEN (Transmit enable) 0: Transmit disabled 1: Transmit enabled 1: Transmit enabled	Not assigned. 0 RSCL (Receiver initialize) 0: Not used 0 1: Bits 1-5 of each SIO status register initialized 0 TSCL (Transmitter initialize) 0: Not used 0 1: Bits 6 and 7 of each SIO status 0 1: Bits 6 and 7 of each SIO status 0 RXEN (Receive enable) 0: Receive disabled 1: Receive enabled 1: Receive enabled TXEN (Transmit enable) 0: Transmit disabled 1: Transmit enabled 1: Transmit enabled

W = -: Write invalid

(1) RSCL (Receiver initialize bit D4)

Writing a 1 to the RSCL bit initializes all of the status bits associated with reception in the SIO status register (the receive error sum, framing error, parity error, overrun error, and receive complete flags). However, the other bits in the register are not affected. This bit should not be written during reception. This bit is automatically cleared to 0 by internal processing.

(2) TSCL (Transmitter initialize bit D5)

Writing a 1 to the TSCL bit initializes the two status bits associated with transmission in the SIO status register (the transmit complete flag and transmit buffer empty flags). However, the other bits in the register are not affected. This bit should not be written during transmission. This bit is automatically cleared to 0 by internal processing.

(3) RXEN (Receive enable bit D6)

If the RXEN bit is set to 1, reception is enabled, and if cleared to 0, reception disabled. Note that even if this bit is cleared to 0 during reception, the receive operation continues to be disabled after its completion (It is not to stop during receiving).

(4) TXEN (Transmit enable bit D7)

If the TXEN bit is set to 1, transmission is enabled, and if cleared to 0, transmission disabled. Note that even if this bit is cleared to 0 during transmission, the transmit operation continues to be disabled after its completion (It is not to stop during transferring).

12.2 Registers related to serial I/O

< at reset : Undefined>

D	Bit name	Function		R	W
8 to 14	Not assigned.			?	-
15	CRXEN (Receive start)	0: Not used		?	
	When internal clock selected	1: Receive operation started		(see	note)
	in CSIO mode	(SCLKO signal output begins)			
			W = -: Wri	ite inv	valid

Notes 1: These registers are write-only (undefined at readouting).

2: At reset the CRXEN bit actually goes 0 though it is assumed to be undefined on the above because these registers cannot be read.

CRXEN (Receive operation start bit D15)

The CRXEN bit is effective only when the internal clock is selected and not used with the external clock or in the UART mode.

Writing a 1 to this bit starts the receive operation in the CSIO mode to output the clock signals from the SCLKO0 and SCLKO1 pins.

When complete 8-bit data is received in the CSIO mode, this bit is cleared to 0 to stop the transfer clock. Therefore, set this bit to 1 at every 8-bit data reception to receive data continually.

12.2 Registers related to serial I/O

12.2.4 SIOn baud rate register (n = 0, 1)

SIO0 baud rate register (S0BAUR)<Address : H'0080 0104>SIO1 baud rate register (S1BAUR)<Address : H'0080 0114>

D0 1 2 3 4 5 6 D7 BRG

< at reset : Undefined>

D	Bit name	Function	R	W
0 to 7	BRG (Baud rate divide bits)	Divides the baud rate count source		
		specified by the SIO mode register		
		by n + 1 according to selected		
		BRG divide ratio "n".		

BRG (Baud rate divide bits D0 to D7)

Each SIO baud rate register divides the baud rate count source specified by the SIO mode register by n + 1 according to selected BRG divide ratio "n".

Because the BRG bits are undefined at reset, they should be written before serial I/O transmission begins. If the contents of either register is to be rewritten after transmission/reception begins, rewrite the register under the conditions that the transmission/reception is complete and that further communication is disabled. The SIO baud rate registers are not affected by writing to the transmitter or receiver initialize bits of the SIO control register 0.

To use the internal clock in the CSIO mode (the SCLKO signal is output), the internal BCLK frequency is divided with the clock divider, then divided by n + 1 according to the BRG divide ratio "n", and finally divided by 2 to be supplied to the transmit/receive shift clock.

To use the external clock in the CSIO mode, the BRG bits are ignored (communication is performed synchronized to the external clock input).

If the internal clock is used in the UART mode, the internal BCLK frequency is divided with the clock divider, then divided by n + 1 according to the BRG divide ratio "n", and finally divided by 16 to be supplied to the transmit/receive shift clock.

If the external clock is used in the UART mode, the external clock inputted to the SCLKI pin is divided by n + 1 according to the BRG divide ratio "n", and then divided by 16 to be supplied to the transmit/ receive shift clock.

If f (BCLK) (CDIV = 00) is selected by setting of count source of baud rate generator, BRG should not be set exceeding 2 Mbits/s in the CSIO mode and 195 Kbits/s in the UART mode.

12.2 Registers related to serial I/O

12.2.5 SIOn interrupt mask register (n = 0, 1)

SIO0 interrupt mask register (S0MASK) SIO1 interrupt mask register (S1MASK)

<Address : H'0080 0105> <Address : H'0080 0115>

D8	9	10	11	12	13	14	D15
		RXSEL	TXSEL	REIE	RXIE	TXIE	TEMPIE

< at reset : H'00>

D	Bit name	Function	R	W
8, 9	Not assigned.		0	-
10	RXSEL	0: Interrupt request generation		
	(Receive complete processing select)	1: DMA transfer request generation		
11	TXSEL	0: Interrupt request generation		
	(Transmit complete processing select)	1: DMA transfer request generation		
12	REIE	0: Receive error interrupt disabled		
	(Receive error interrupt enable)	1: Receive error interrupt enabled		
13	RXIE	0: Receive complete interrupt disabled		
	(Receive complete interrupt enable)	1: Receive complete interrupt enabled		
14	TXIE	0: Transmit complete interrupt disabled		
	(Transmit complete interrupt enable)	1: Transmit complete interrupt enabled		
15	TEMPIE	0: Transmit buffer empty interrupt disabled		
	(Transmit buffer empty interrupt enable)	1: Transmit buffer empty interrupt enabled		

W = -: Write invalid

Fig. 12.2.3 Processing of transmit/receive complete signals

12.2 Registers related to serial I/O

(1) RXSEL (Receive complete processing select bit D10)

The RXSEL bit selects to request either interrupt or DMA transfer at the receive complete (receive buffer full) state when the RXIE bit (see below) is set to 1. If this bit is cleared to 0, an interrupt request will be generated, and if set to 1, a DMA transfer request generated.

(2) TXSEL (Transmit complete processing select bit D11)

The TXSEL bit selects to request either interrupt or DMA transfer at the transmit buffer empty state when the TEMPIE bit (see below) is set to 1. If this bit is cleared to 0, an interrupt request will generated, and if set to 1, a DMA transfer request generated.

Note that in the SIO0 and the SIO1 channel, only the former is provided with such a function as could generate a DMA transfer at the transmit buffer empty state.

(3) REIE (Receive error interrupt enable bit D12)

If the REIE bit is set to 1, receive error interrupt is enabled. The following receive errors are detectable:

- CSIO mode: Overrun error (OE)
- UART mode: Overrun error (OE), framing error (FE) and parity error (PE)

Each receive error generated is indicated by the SIO status register.

(4) RXIE (Receive complete interrupt enable bit D13)

If the RXIE bit is set to 1, receive complete (receive buffer full) interrupt is enabled. This bit should also be set to 1 to request DMA transfer at the receive complete state.

(5) TXIE (Transmit complete interrupt enable bit D14)

If the TXIE bit is set to 1, transmit complete (transmit shift register empty) interrupt is enabled.

(6) TEMPIE (Transmit buffer empty interrupt enable bit D15)

If the TEMPIE bit is set to 1, transmit buffer empty interrupt is enabled. This bit should also be set to 1 to request DMA transfer at the transmit buffer empty state.

12.2 Registers related to serial I/O

12.2.6 SIOn status register (n = 0, 1)

SIO0 status register (S0STAT) SIO1 status register (S1STAT)

<Address : H'0080 0108> <Address : H'0080 0118>

D0	1	2	3	4	5	6	D7
	RXERR	FE	PE	OE	RXCP	TXCP	TBEMP

			< at	reset	: H'03>
D	Bit name	Function	Ini.	R	W
0	Not assigned.		0	0	-
1	RXERR	0: No receive error	0		-
	(Receive error sum)	1: Receive error			
2	FE (Framing error)	0: No receive framing error	0		-
	Used only in UART mode	1: Receive framing error			
3	PE (Parity error)	0: No receive parity error	0		-
	Used only in UART mode	1: Receive parity error			
4	OE	0: No receive overrun error	0		-
	(Overrun error)	1: Receive overrun error			
5	RXCP	0: Receive uncompleted	0		-
	(Receive complete :	1: Receive completed			
	Receive buffer full)	(Receive buffer full)			
6	ТХСР	0: Transmit uncompleted	1		-
	(Transmit complete :	(Data exist in transmit shift			
	Transmit shift register empty)	register)			
		1: Transmit completed			
		(Transmit shift register empty)			
7	TEMP	0: Data exist in transmit buffer	1		-
	(Transmit buffer empty)	1: Transmit buffer empty			

W = -: Write invalid

(1) RXERR (Receive error sum bit D1)

[Condition for setting]

The RXERR bit is set to 1 if any one of the overrun error, framing error, and parity error is generated at reception. A 1 on this bit inhibits further reception.

[Condition for clearing]

The RXERR bit is cleared by reading the SIO status register or setting the RSCL bit of SIO control register 0.

If a readout of the SIO status register and the receive completion of the next data occur simultaneously, the register is read first; thereafter the receive status of the next data is written to the RXCP bit (see below).

(2) FE (Framing error bit D2)

The FE bit is effective only in the UART mode.

[Condition for setting]

This bit is set to 1 if the number of received stop bits is different from that specified by the STB bit of the SIO mode register. A 1 on this bit inhibits further reception.

[Condition for clearing]

This bit is cleared by reading the SIO status register or setting the RSCL bit of SIO control register 0.

If a readout of the SIO status register and the receive completion of the next data occur simultaneously, the register is read first; thereafter the receive status of the next data is written to the RXCP bit (see below).

(3) PE (Parity error bit D3)

The PE bit is effective only in the UART mode.

[Condition for setting]

This bit is set to 1 if the PEN bit of the SIO mode register is set to 1 (parity enable/disable), and the parity (even or odd) of the received data differs from that specified by the PSEL bit of the register. A 1 on this bit inhibits further reception.

[Condition for clearing]

This bit is cleared by reading the SIO status register or setting the RSCL bit of SIO control register 0.

If a readout of the SIO status register and the receive completion of the next data occur simultaneously, the register is read first; thereafter the receive status of the next data is written to the RXCP bit (see below).

(4) OE (Overrun error bit D4)

[Condition for setting]

The OE bit is set to 1 if the previously received data, which is present in the SIO receive buffer register to be read (the RXCP bit remains a 1), is overwritten by the newly received data. A 1 on this bit inhibits further reception.

[Condition for clearing]

This bit is cleared by reading the SIO status register or setting the RSCL bit of SIO control register 0.

If a readout of the SIO status register and the receive completion of the next data occur simultaneously, the register is read first; thereafter the receive status of the next data is written to the RXCP bit (see below).

12.2 Registers related to serial I/O

(5) RXCP (Receive Complete: Receive Buffer Full Bit D5)

[Condition for setting]

The RXCP bit will be set to 1 if data reception has been complete (receive buffer full); i.e. If the last bit of the receive data has been received in the CSIO mode, or if the last stop bit of the receive data (the last stop bit if two stop bits are selected) has been received in the UART mode.

However, this bit will not be set if receive errors have occurred.

[Condition for clearing]

The RXCP bit is cleared by reading the SIO receive buffer register or setting the RSCL bit of SIO control register 0 (this bit cannot be cleared by reading the SIO status register).

If the next complete data has been received while this bit remains a 1, an overrun error (OE) will be generated. Any error associated with reception (OE, PE, or FE) clears to 0 this bit and sets the RXERR bit instead.

If a readout of the SIO receive buffer register and the receive completion of the next data occur simultaneously, the register is read first accompanied by a receive complete interrupt request generation; thereafter the next data is written to the register.

(6) TXCP (Transmit Complete: Transmit Shift Register Empty Bit D6)

[Initial state]

Upon reset, the initial value of the TXCP bit is a 1. This bit is also set to 1 if the transmitter is initialized by setting the TSCL bit of SIO control register 0.

[Condition for clearing]

The TXCP bit is cleared at the time transmission is started; i.e. at the time the first bit of transmit data in the CSIO mode or the start bit in the UART mode is transmitted after the SIO transmit buffer register transfers data to the SIO transmit shift register.

[Condition for setting]

The TXCP bit is set to 1 at the time transmission is completed (transmit shift register empty); i.e. at the time the last bit of the transmit data in the CSIO mode or the stop bit (the last stop bit if two stop bits are selected) in the UART mode is transmitted.

In the continuous transmission, this bit is not set at every transmit completion, but set to 1 only when the last transmission of continuous data is complete.

(7) TEMP (Transmit Buffer Empty Bit D7)

[Initial State]

Upon hardware reset, the initial value of the TEMP bit is a 1. This bit is also set to 1 if the transmitter is initialized by setting the TSCL bit of SIO control register 0.

[Condition for Clearing]

The TEMP bit is cleared to 0 by writing transmit data to the SIO transmit buffer register.

[Condition for Setting]

The TEMP bit is set to 1 if the SIO transmit buffer register is emptied after the SIO transmit buffer register transfers data to the SIO transmit shift register.

12.2 Registers related to serial I/O

12.2.7 SIOn transmit buffer register (n = 0, 1)

SIO0 transmit buffer register (S0TXB)<Address : H'0080 0107>SIO1 transmit buffer register (S1TXB)<Address : H'0080 0117>

D8 9 10 11 12 13 14 D15

< at reset : Undefined>

D	Bit name	Function	R	W
8 to 15	TDATA	Transmit data is written.		
	(Transmit data)	Write 7-bit data to D9 to D15 (only in the UART mode)		
		and 8-bit data to D8 to D15 read back as either 0 or 1		

R = ? : Undefined at read

Each SIO transmit buffer register is loaded with transmit data. These registers are write-only and cannot be read out. Data is written at the LSB side; i.e. 7-bit data (only in the UART mode) is written to bits D9 to D15, and 8-bit data to bits D8 to D15.

If data is loaded in this register after the TXEN bit of SIO control register 0 is set to 1, the data in the register is transferred to the SIO transmit shift register to start transmission.

After the data has been transferred to the transmit shift register, the next transmit data can be set to the SIO transmit buffer register during transmission because this register is empty.

12.2 Registers related to serial I/O

12.2.8 SIOn receive buffer register (n = 0, 1)

SIO0 receive buffer register (S0RXB)
SIO1 receive buffer register (S1RXB)<Address : H'0080 0109>
<Address : H'0080 0119>D891011121314D15RDATA

< at reset : Undefined>

D	Bit name	Function	R	W
8 to 15	RDATA	Receive data is stored.		-
	(Receive data)	7-bit data stored in D9 to D15 (only in the UART mode)		
		and 8-bit data in D8 to D15		

W = -: Write invalid

Each SIO receive buffer register stores received data and is read-only. When data reception is complete, the contents of the SIO receive shift register is transferred to this register.

Seven-bit data only in the UART mode is stored in bits D9 to D15 with bit D8 cleared to 0.

If the previously received data, which is present in this register to be read, is overwritten by the newly received data, an overrun error is generated. The OE bit of the SIO status register is set (and the RXCP bit is cleared) at the same time the contents of the SIO receive shift register are transferred to the SIO receive buffer register.

If a readout of the SIO receive buffer register and the receive completion of the next data occur simultaneously, the register is read first; thereafter the next received data is written to the register (in this case, no overrun error occurs).

It is recommended that the SIO receive buffer register and the SIO status register be read out simultaneously (read out by one access with a 16-bit halfword).

If an overrun error is generated during the readout of the SIO receive buffer register succeeding to that of the RXCP bit of the SIO status register, the overwritten data might be read as the previously received one.

12.3.1 Setting of CSIO baud rate

The baud rate in the CSIO mode (data transfer rate) is determined by the transmit and receive shift clocks. These shift clocks are generated by the clock source that is specified by the CKS bit (internal/external clock select bit D15 of the SIO mode register). If this bit is cleared, internal clock f(BCLK) is selected, and if set, the external clock selected.

The equation giving the baud rate in transmission/reception depends on whether the internal or the external clock is selected.

(1) Internal clock selected in CSIO mode

If the internal clock is selected, f(BCLK) is divided with the clock divider to be inputted to the baud rate generator (BRG).

The divide ratio of the clock divider is specified by the BRGS bits (baud rate generator count source select) bits D13 and D14 of the SIO mode register; 1, 1/8, 1/32, or 1/256 is selectable.

The baud rate generator divides the clock divider output by the baud rate register value + 1, and this output is divided by two to be used as the shift clock for data transmission/reception.

When the internal clock is selected in the CSIO mode, the baud rate is given by the following equation.

f (BCLK)

Baud rate = -[bps]

Clock divider divided value × (Baud rate register value + 1) × 2

Baud rate register value	= H'00 to H'FF
Clock divider divided value	= 1, 8, 32, 256

If the baud rate ratio of the clock divide = 1 is selected, the value of baud rate register should not be set exceeding 2 Mbps.

(2) External clock selected in CSIO mode

In the CSIO mode, the external input from the SCLKI pin, not the output of the baud rate generator, is used as the transmit/receive shift clock.

The maximum clock frequency inputted to the SCLKI pin is f(BCLK)/16.

Baud rate = Clock inputted to the SCLKI pin [bps]

12.3.2 Initialization at CSIO transmission

The sequence of the initialization at CSIO transmission is as follows:

(1) Selection of pin functions

The pins related to serial I/O serve input/output pins alternatively, so that the setting of pin functions is necessary (refer to Chapter 8 "I/O ports and pin functions").

(2) Setting of SIO control register 0

Set transmit initialize bit D5 of the register to 1 to initialize the transmitter.

(3) Setting of SIO mode register

- Select the CSIO mode
- Select LSB first or MSB first
- Specify the divide ratio of the clock divider (if internal clock selected)
- Select the internal or external clock

(4) Setting of SIO baud rate register

Specify the divide ratio of the baud rate generator if the internal clock is selected. (Refer to Section 12.3.1 "Setting of CSIO baud rate").

(5) Setting of SIO interrupt mask register

- Specify transmit complete processing (interrupt or DMA transfer request)
- Select transmit complete (transmit shift register empty) interrupt enable or disable
- Select transmit buffer empty interrupt enable or disable

(6) Setting of interrupt controller (SIO transmit interrupt control register)

Specify the priority level (Levels 0 to 7: Level 7 is interrupt disabled) if interrupts (transmit buffer empty interrupt or transmit complete interrupt) are used at transmission.

(7) Setting of DMAC

Specify the DMAC if DMA transfer is requested from the internal DMAC in the transmit buffer empty state (refer to Chapter 9 "DMAC").

Fig. 12.3.1 CSIO transmit initialization sequence

12.3.3 Beginning of CSIO transmission

When if the following conditions for transmission are satisfied after initialization, transmission begins.

(1) When internal clock selected in CSIO mode

- The transmit enable bit of the SIO control register 0 is set to 1
- Transmit data is loaded in the SIO transmit buffer register (the transmit buffer empty bit is a 0)

(2) When external clock selected in CSIO mode

- The transmit enable bit of SIO control register 0 is set to 1
- Transmit data is loaded in the SIO transmit buffer register (the transmit buffer empty bit is a 0)
- A falling edge of the transmit clock is input to the SCLKI pin

When transmission begins, data is transmitted in the following sequence:

- The contents of the SIO transmission buffer register is transferred to the SIO transmit shift register
- The transmission buffer empty bit is set to 1 (see note)
- The transmit complete (transmit shift register empty) bit is cleared to 0
- Data transmission begins synchronized to the shift clock

Note:

Interrupt request or DMA transfer request can be generated at the transmit buffer empty state.

12.3.4 CSIO continuous transmission

After the transmit buffer register transfers data to the transmit shift register, the next data can be loaded in the transmit buffer register even if the transmission is not complete. If the next data is written to the transmission buffer register before the transmission of the previous data is complete, continuous transmission will be performed.

The completion of data transfer from the transmit buffer register to the transmit shift register is acknowledged by the transmit buffer empty flag of the SIO status register.

If the SIO interrupt mask register enables an transmit buffer empty interrupt, this interrupt is generated when data is transferred from the transmit buffer register to the transmit shift register.

12.3.5 CSIO transmit complete processing

When data transmission is complete, the following operations are automatically performed under hardware control.

(1) Non-continuous transmission

• Setting the transmit complete bit to 1

Note:

If a transmit complete interrupt is enabled, this interrupt is generated.

(2) Continuous transmission

• Setting the transmit complete bit to 1 when the last transmission of the continuous data is complete.

Note:

If a transmit complete interrupt is enabled, this interrupt is generated.

In continuous transmission, the transmit complete bit of the SIO status register is not set at every transmit completion, but set to 1 only when the last transmission of continuous data is complete.

Transmit complete interrupts are also not generated at every transmit completion, but generated only when the last transmission of continuous data is complete.

Fig. 12.3.2 CSIO transmit operation (Hardware processing)

12.3.6 CSIO transmit operation

Examples of the CSIO transmit operation are shown in Figures 12.3.3 and 12.3.4.

Fig. 12.3.3 CSIO transmit operation (Single transmission: Transmit complete interrupt used)

12.3 Transmission in CSIO mode

Fig. 12.3.4 CSIO transmit operation (Continuous transmission: Transmit buffer empty and transmit complete interrupts used)

12.4 Reception in CSIO mode

12.4.1 Initialization at CSIO reception

The sequence of the initialization at CSIO reception is as follows:

(1) Selection of pin functions

The pins related to serial I/O serve input/output pins alternatively, so that the setting of pin functions is necessary (refer to Chapter 8 "I/O Ports and Pin Functions").

(2) Setting of SIO control register 0

Set receive initialize bit D4 of this register to 1 to initialize the receiver.

(3) Setting of SIO mode register

- Select the CSIO mode
- Select LSB first or MSB first
- Specify the divide ratio of the clock divider (if internal clock selected)
- Select the internal or external clock

(4) Setting of SIO baud rate register

Specify the divide ratio of the baud rate generator if the internal clock is selected (Refer to Section 12.3.1 "Setting of CSIO baud rate").

(5) Setting of SIO interrupt mask register

- Specify receive complete processing (interrupt or DMA transfer request)
- Select receive error interrupt enable or disable
- Select receive complete (Receive buffer full) interrupt enable or disable

(6) Setting of interrupt controller (SIO receive interrupt control register)

Specify the priority level (Levels 0 to 7: Level 7 is interrupt disabled) if interrupts (receive error interrupt or receive complete interrupt) are used at reception.

(7) Setting of DMAC

Specify the DMAC if DMA transfer is requested from the internal DMAC at the transmit completion (refer to Chapter 9 "DMAC").

Fig. 12.4.1 CSIO receive initialization sequence

12.4.2 Beginning of CSIO reception

If the following conditions for reception are satisfied after initialization, reception begins.

(1) Internal clock selected in CSIO mode

• The receive enable bit of SIO control register 0 is set to 1

• The receive start bit of SIO control register 1 is set to 1 (the receive clock is output from the SCLKO pin)

Note:

In continuous reception of data, SIO control register 1 should be set at every data reception because the receive start bit of this register is cleared at every reception of 8-bit data

(2) When external clock selected in CSIO mode

- The transmit enable bit of SIO control register 0 is set to 1
- A falling edge of the receive clock is input to the SCLKI pin

If the above conditions are satisfied, 8-bit serial data is received synchronized to the receive shift clock.

12.4.3 CSIO receive complete processing

When data reception is complete, the following operations are automatically performed under hardware control.

• Setting the receive complete bit to 1

Note:

If a receive complete interrupt is enabled, the interrupt is generated.

• Setting the overrun error and receive error sum bits to 1s if an error occurs (only an overrun error in the CSIO mode)

When the RXIE bit of the SIO interrupt mask register is set to 1 (receive complete interrupt enabled), an interrupt request occurs upon receive completion if the RXSEL bit is cleared to 0 (interrupt request generated), or a DMA transfer request occurs if the RXSEL bit is set to 1 (DMA transfer request generated). However, if receive errors occur, neither a receive complete interrupt nor a DMA transfer request is generated (if a receive error interrupt is enabled, a receive error interrupt is generated).

12.4.4 Flags indicating states of CSIO receive operation

The flags that indicate the states of the CSIO receive operation are as follows:

- the receive complete bit of the SIO status register
- the receive error sum bit of the SIO status register
- the overrun error bit of the SIO status register

It is recommended that the SIO receive buffer register and the SIO status register be read out two bytes simultaneously as a halfword.

If an overrun error is generated during the readout of the SIO receive buffer register succeeding to that of the RXCP bit of the SIO status register, the overwritten data might be read as the previously received one.

If the previously received data, which is present in the SIO receive buffer register to be read, is overwritten by the newly received data, an overrun error is generated. The OE bit of the SIO status register is set (and the RXCP bit is cleared) at the same time the contents of the SIO receive shift register are transferred to the SIO receive buffer register.

If a readout of the SIO receive buffer register and the receive completion of the next data occur simultaneously, the register is read first; thereafter the next received data is written to the SIO receive buffer register (in this case, no overrun error occurs).

The above status bits related to CSIO reception are cleared by reading the SIO receive buffer register or setting the receiver initialize bit of SIO control register 0.

12.4.5 CSIO receive operation

Examples of the CSIO receive operation are shown in Figures 12.4.3 and 12.4.4.

12.4 Reception in CSIO mode

12.5 Notes on use of CSIO mode

• Setting of SIO mode register and SIO baud rate register

The SIO mode register and the SIO baud rate register should be written prior to beginning serial I/O operation. If the contents of the registers are to be rewritten after transmission/reception begins, rewrite the registers under the conditions that the transmission/reception is complete and that further communication is disabled (by clearing the transmit enable and receive enable bits of the SIO control register).

Continuous transmission

To transmit continuously, data should be written to the SIO transmit buffer register while the preceding data is being transmitted (the transmit complete flag remains in the 0 state).

• Transmit/receive by DMA

If DMA transfer used, communication should be started after the DMAC is set accepting DMA transfer request (by specifying DMAC registers).

• SIO status register

① Readout of SIO status register

It is recommended that the SIO receive buffer register and the SIO status register be read out simultaneously. However, if DMA transfer request is generated by a receive complete signal, both registers need not be read at the same time; the readout of the SIO receive buffer register only is effective.

When receive data has been loaded in the SIO receive shift register at the same time the SIO status register and the SIO receive buffer register are read out, the previous data and its status are read; thereafter, the receive data and its status are written.

② Receive complete bit

If receive errors occur, the receive complete bit cannot be set. If the next complete data has been received while the receive complete bit remains a 1 (an overrun error is generated), this bit will be cleared to 0.

③ Transmit complete bit

In continuous transmission, this bit is set only when the last transmission of continuous data has been completed (this bit cannot be set at every data transmission).

Overrun Error

If the previously received data, which is present in the SIO receive buffer register to be read, is overwritten by the newly received data, an overrun error is generated. If a readout of the SIO receive buffer register and the receive completion of the next data occur simultaneously, the register is read first; thereafter the next received data is written to the SIO receive buffer register.

12.5 Notes on use of CSIO mode

- DMA transfer request generation at SIO transmission If the transmitter is requesting DMA transfer, set the TEMPIE bit of the SIO interrupt mask register to 1 (transmit buffer empty interrupt enabled).
- DMA transfer request generation at SIO reception If the receiver is requesting DMA transfer, set the RXIE bit of the SIO interrupt mask register to 1 (receive complete interrupt enabled).
- Notes on select of internal clock
 When the internal clock is used in the CSIO reception, the receive shift clock outputs 8 clocks from the SCLKO pin and stops. Therefore, set the CRXEN bit of SIO control register 1 to a 1 repeatedly in continuous reception.

12.6.1 Setting of URAT baud rate

The baud rate in the UART mode (data transfer rate) is determined by the transmit and receive shift clocks. These shift clocks are generated by the clock source that is specified by the CKS bit (internal/external clock select bit D15 of the SIO mode register). If this bit is cleared, internal clock f(BCLK) is selected, and if set, the external clock selected.

The equation giving the baud rate in transmission/reception depends on whether the internal or the external clock is selected.

(1) Internal clock selected in UART mode

If the internal clock is used, f(BCLK) is divided with the clock divider to be inputted to the baud rate generator (BRG), and finally divided by 16 to be supplied to the transmit/receive shift clock.

The divide ratio of the clock divider is specified by the CDIV bits (baud rate generator count source select bits D13 and D14) of the SIO mode register; 1, 1/8, 1/32, or 1/256 is selectable.

The baud rate generator divides the clock divider output by the baud rate register value + 1, and this output is divided by 16 to be used as the shift clock for data transmission/reception.

When the internal clock is selected in the UART mode, the baud rate is given by the following equation.

f (BCLK) Baud rate = __________ [bps] Clock divider divided value × (Baud rate register value + 1) × 16

> Baud rate register value = H'00 to H'FF Clock divider divided value = 1, 8, 32, 256

If the baud rate ratio of the clock divide = 1 is selected, the value of baud rate register should not be set exceeding 195 Kbps.

(2) When external clock selected in UART mode

The clock input to the SCLKI pin is divided by the baud rate register value + 1 in the baud rate generator and then divided by 16 to be supplied to the transmit/receive shift clock. The maximum clock frequency inputted to the SCLKI pin is f(BCLK)/16.

Clock inputted to the SCLKI pin

Baud rate = ______[bps] (Baud rate register value + 1) × 16

12.6.2 UART transmit/receive data formats

The transmit/receive data formats in the UART mode are specified by the SIO mode register. Transmit/ receive data formats available in the UART mode are explained below.

Fig. 12.6.1 Example of transmit/receive data formats in UART mode

Bit name	Description
ST (Start bit)	One bit of a logic LOW signal placed in front of transmit data,
	indicating the beginning of data transmission.
D0 to D7 (Character bits)	Transmit/receive data transferred through serial I/O;
	transmission/reception of 7 or 8 bits available in the UART mode.
PAR (Parity bit)	Added to a transmit/receive character; if parity enabled, the selection of
	even or odd parity automatically determines whether the number of
	1s in the character including the parity bit is even or odd.
SP (Stop bit)	Added to the character (or after the parity bit if parity enabled),
	indicating the end of data transmission; 1 or 2 bits is selectable.

|--|

12.6 Transmission in UART mode

12.6.3 Initialization at UART transmission

The sequence of the initialization at UART transmission is as follows:

(1) Selection of pin functions

The pins related to serial I/O serve input/output pins alternatively, so that the setting of pin functions is necessary (refer to Chapter 8 "I/O Ports and Pin Functions").

(2) Setting of SIO control register 0

Set transmit initialize bit D5 of the register to 1 to initialize the transmitter.

(3) Setting of SIO mode register

- Select the UART mode
- Select parity (selected even or odd if parity enabled)
- Select stop bit length
- Select character length
- Specify the divide ratio of the clock divider (if internal clock selected)
- Select the internal or external clock

(4) Setting of SIO baud rate register

Specify the divide ratio of the baud rate generator if the internal clock is selected. (Refer to Section 12.6.1 "Setting of UART baud rate").

(5) Setting of SIO interrupt mask register

- Specify transmit complete processing (interrupt or DMA transfer request)
- Select transmit complete (transmit shift register empty) interrupt enable or disable
- · Select transmit buffer empty interrupt enable or disable

(6) Setting of interrupt controller (SIO transmit interrupt control register)

Specify the priority level (Levels 0 to 7: Level 7 is interrupt disabled) if interrupts (transmit buffer empty interrupt or transmit complete interrupt) are used at transmission.

(7) Setting of DMAC

Specify the DMAC if DMA transfer is requested from the internal DMAC in the transmit buffer empty state (refer to Chapter 9 "DMAC").

12.6.4 Beginning of UART transmission

When If the following conditions for transmission are satisfied after initialization, transmission begins.

- The transmit enable bit of the SIO control register 0 is set to 1
- Transmit data is loaded in the SIO transmit buffer register (the transmit buffer empty bit is a 0)

When transmission begins, data is transmitted in the following sequence:

- The contents of the SIO transmission buffer register is transferred to the SIO transmit shift register
- The transmission buffer empty bit is set to 1 (Note)
- The transmit complete (transmit shift register empty) bit is cleared to 0
- Data transmission begins synchronized to the shift clock

Note:

Interrupt request or DMA transfer request can be generated at the transmit buffer empty state.

12.6.5 UART continuous transmission

After the transmit buffer register transfers data to the transmit shift register, the next data can be loaded in the transmit buffer register even if the transmission is not complete. If the next data is written to the transmission buffer register before the transmission of the previous data is complete, continuous transmission will be performed.

The completion of data transfer from the transmit buffer register to the transmit shift register is acknowledged by the transmit buffer empty flag of the SIO status register.

If the SIO interrupt mask register enables an transmit buffer empty interrupt, this interrupt is generated when data is transferred from the transmit buffer register to the transmit shift register.

12.6.6 UART transmit complete processing

When data transmission is complete, the following operations are automatically performed under hardware control.

(1) Non-continuous transmission

• Setting the transmit complete bit to 1

Note:

If a transmit complete interrupt is enabled, this interrupt is generated.

(2) Continuous transmission

• Setting the transmit complete bit to 1 when the last transmission of the continuous data is complete.

Note:

If a transmit complete interrupt is enabled, this interrupt is generated.

In continuous transmission, the transmit complete bit of the SIO status register is not set at every transmit completion, but set to 1 only when the last transmission of continuous data is complete. Transmit complete interrupts are also not generated at every transmit completion, but generated only when the last transmission of continuous data is complete.

12.6 Transmission in UART mode

12.6.7 UART transmit operation

Examples of the UART transmit operation are shown in Figures 12.6.5 and 12.6.6.

Fig. 12.6.5 UART transmit operation (Single transmission: Transmit complete interrupt used)

12.6 Transmission in UART mode

12.7 Reception in UART mode

12.7.1 Initialization at UART reception

The sequence of the initialization at UART reception is as follows:

(1) Selection of pin functions

The pins associated with serial I/O serve input/output pins alternatively, so that the setting of pin functions is necessary (refer to Chapter 8 "I/O ports and pin functions").

(2) Setting of SIO control register 0

Set receive status clear bit D4 of this register to 1 to initialize the receiver.

(3) Setting of SIO mode register

- Select the UART mode
- Select parity (Select even or odd if the parity enabled)
- Select stop bit length
- Select character length
- Specify the divide ratio of the clock divider (if internal clock selected)
- Select the internal or external clock

(4) Setting of SIO baud rate register

Specify the divide ratio of the baud rate generator (Refer to Section 12.6.1 "Setting of UART baud rate").

(5) Setting of SIO interrupt mask register

- Specify receive complete processing (interrupt or DMA transfer request)
- Select receive complete (Receive buffer full) interrupt enable or disable
- Select receive error interrupt enable or disable

(6) Setting of interrupt controller (SIO receive interrupt control register)

Specify the priority level (Levels 0 to 7: Level 7 is interrupt disabled) if interrupts (receive error interrupt or receive complete interrupt) are used at reception.

(7) Setting of DMAC

Specify the DMAC if DMA transfer is requested from the internal DMAC at the receive completion (refer to Chapter 9 "DMAC").

Fig. 12.7.1 UART receive initialization sequence

12.7.2 Beginning of UART reception

If the following conditions for reception are satisfied after initialization, reception begins.

- The receive enable bit of SIO control register 0 is set to 1
- A start bit input (the falling edge) is placed on the RXD pin

If the above conditions are satisfied, the UART reception begins; however, if another HIGH state caused by noise is detected during the period that the start bit is valid, the reception stops to wait the next start bit.

12.7.3 UART receive complete processing

When data reception is complete, the following operations are automatically performed under hardware control.

• Setting the receive complete bit to 1

Note:

If a receive complete interrupt is enabled, the interrupt is generated.

• Setting error bits concerned (OE/FE/PE) and the receive error sum bit to 1s if an error occurs

When the RXIE bit of the SIO interrupt mask register is set to 1 (receive complete interrupt enabled), an interrupt request occurs upon receive completion if the RXSEL bit is cleared to 0 (interrupt request generated), or a DMA transfer request occurs if the RXSEL bit is set to 1 (DMA transfer request generated). However, if receive errors occur, neither a receive complete interrupt nor a DMA transfer request is generated (if a receive error interrupt is enabled, a receive error interrupt is generated).

SERIAL I/O

12.7 Reception in UART mode

SERIAL I/O

12.7 Reception in UART mode

12.7.4 UART receive operation

Examples of the CSIO receive operation are shown in Figures 12.7.3 and 12.7.4.

SERIAL I/O

12.8 Notes on use of UART mode

Fig. 12.7.5 UART receive operation (Overrun error generated)

12.8 Notes on use of UART mode

• Setting of SIO mode register and SIO baud rate register

The SIO mode register and the SIO baud rate register should be written prior to beginning serial I/O operation. If the contents of the registers are to be rewritten after transmission/reception begins, rewrite the registers under the conditions that the transmission/reception is complete and that further communication is disabled (by clearing the transmit enable and receive enable bits of the SIO control register).

Continuous transmission

To transmit continuously, data should be written to the SIO transmit buffer register while the preceding data is being transmitted (the transmit complete flag remains in the 0 state).

• Transmit/receive by DMA

If DMA transfer used, communication should be started after the DMAC is set accepting DMA transfer request (by specifying DMAC registers).

• SIO status register

①Readout of SIO status register

It is recommended that the SIO receive buffer register and the SIO status register be read out simultaneously. However, if DMA transfer request is generated by a receive complete signal, both registers need not be read at the same time; the readout of the SIO receive buffer register only is effective.

When receive data has been loaded in the SIO receive shift register at the same time the SIO status register and the SIO receive buffer register are read out, the previous data and its status are read; thereafter, the receive data and its status are written.

2Receive complete bit

If receive errors occur, the receive complete bit cannot be set. If the next complete data has been received while the receive complete bit remains a 1 (an overrun error is generated), this bit will be cleared to 0.

③Transmit complete bit

In continuous transmission, this bit is set only when the last transmission of continuous data has been completed (this bit cannot be set at every data transmission).

• Overrun Error

If the previously received data, which is present in the SIO receive buffer register to be read, is overwritten by the newly received data, an overrun error is generated. If a readout of the SIO receive buffer register and the receive completion of the next data occur simultaneously, the register is read first; thereafter the next received data is written to the SIO receive buffer register.

• DMA transfer request generation at SIO transmission

If the transmitter is requesting DMA transfer, set the TEMPIE bit of the SIO interrupt mask register to 1 (transmit buffer empty interrupt enabled).

• DMA transfer request generation at SIO reception If the receiver is requesting DMA transfer, set the RXIE bit of the SIO interrupt mask register to 1 (receive buffer full enabled).

SERIAL I/O

12.8 Notes on use of UART mode

MEMORANDUM

CHAPTER 13 INTERRUPT CONTROLLER

- 13.1 Summary of interrupt controller (ICU)
- 13.2 Interrupt sources of internal peripheral I/Os
- 13.3 Registers related to ICU
- 13.4 ICU vecter table
- 13.5 Interrupt operation
- 13.6 System break interrupt (SBI)

13.1 Summary of interrupt controller (ICU)

13.1 Summary of interrupt controller (ICU)

The interrupt controller (ICU) controls the maskable interrupts generated from the internal peripheral I/Os and the system break interrupt (SBI). Maskable interrupts from the internal peripheral I/Os are reported to the M32R CPU as external interrupts (EI).

There are 19 sources in the maskable interrupts in the internal peripheral I/Os, to which 8 priority levels including interrupt disable are assigned. If two or more interrupt requests of the same priority level occur simultaneously, their fixed priority levels defined by hardware are applied. Interrupt request sources in the internal peripheral I/Os can be identified by reading the interrupt status register of each internal peripheral I/O.

On the other hand, the system break interrupt (SBI) is the interrupt that can be generated if a falling-edge trigger is input to the SBI pin. This interrupt is used in such case of emergency that any fault is detected in power supply or by the external watchdog timer and accepted regardless of whether the IE bit of the PSW register is set or cleared.

After taking measures for SBI, control should not resume the interrupted program, but be terminated or reset.

The summary of the interrupt controller is shown in Table 13.1.1 and Figure 13.1.1.

Item	Description
Interrupt sources	Maskable interrupts from internal peripheral I/Os: 19 sources
	System break interrupt :One source (input to SBI pin)
Interrupt level	8 levels including interrupt disable
	(for interrupts with the same priority their fixed priorities defined by hardware
	are applied)

Table 13.1.1 Outline of interrupt controller

13.1 Summary of interrupt controller (ICU)

Fig. 13.1.1 Interrupt controller block diagram

13.2 Interrupt sources of internal peripheral I/Os

13.2 Interrupt sources of internal peripheral I/Os

Interrupt requests are input to the interrupt controller from MJTs (multi-junction timers), the DMAC, serial I/O, and the A-D converter. For detail of interrupt, refer to the chapter of each internal peripheral I/O.

Interrupt sources	Description	Number of input source
A-D converter interrupt	Completion of single mode,	1
	a scan of single scan mode,	
	or comparator mode of A-D converter	
SIO0 transmit interrupt	SIO0 transmit complete	1
	or transmit buffer empty interrupt	
SIO0 receive interrupt	SIO0 receive complete	1
	or receive error interrupt	
SIO1 transmit interrupt	SIO1 transmit complete	1
	or transmit buffer empty interrupt	
SIO1 receive interrupt	SIO1 receive complete	1
	or receive error interrupt	
DMAC interrupt	Underflow of DMAC transfer count register	5
MJT output interrupt 0	IRQ0 of MJT (TIO0 to TIO3)	4
MJT output interrupt 1	IRQ1 of MJT (TOP6, TOP7)	2
MJT output interrupt 2	IRQ2 of MJT (TOP0 to TOP5)	6
MJT output interrupt 3	IRQ3 of MJT (TIO8, TIO9)	2
MJT output interrupt 4	IRQ4 of MJT (TIO4 to TIO7)	4
MJT output interrupt 5	IRQ5 of MJT (TOP10)	1
MJT output interrupt 6	IRQ6 of MJT (TOP8, TOP9)	2
MJT output interrupt 7	IRQ7 of MJT (TMS0, TMS1)	2
MJT input interrupt 0	IRQ8 of MJT (TIN7 to TIN11)	5
MJT input interrupt 1	IRQ9 of MJT (TIN0 to TIN2)	3
MJT input interrupt 2	IRQ10 of MJT (TIN12 to TIN19)	8
MJT input interrupt 3	IRQ11 of MJT (TIN20 to TIN23)	4
MJT input interrupt 4	IRQ12 of MJT (TIN3 to TIN6)	4

Table 13.2.1 Interrupt sources of internal peripheral I/Os

13.3 Registers related to ICU

13.3 Registers related to ICU

The register map related to the interrupt controller (ICU) is shown in Figure 13.3.1.

Addres	SS	+0 D0	number	D7	D8	+1 number	D1
Н'0080	0000		Interrupt	vector r	egister (l'	VECT)	
Н'0080	0002			rese	rved		
Н'0080	0004	Interrupt ma	ask register (IM	ASK)		reserved	
н'0080	0006	SBI contr	ol register (SBI	CR)		reserved	
	($\hat{}$
Н'0080	006C	A-D conversion	interrupt control I IADCCR)	egister	SIO0 trai	nsmit interrupt contr (ISIO0TXCR)	rol register
н'0080	006E	SIO0 receive (Is	interrupt control re SIO0RXCR)	egister	SIO1 trar	nsmit interrupt contr (ISIO1TXCR)	ol register
Н'0080	0070	SIO1 receive (Is	interrupt control re SIO1RXCR)	egister	DMA	C interrupt control re (IDMACCR)	egister
Н'0080	0072	MJT output in (I	terrupt control reg MJTOCR0)	ister 0	MJT out	put interrupt control (IMJTOCR1)	register 1
н'0080	0074	MJT output in (I	terrupt control reg MJTOCR2)	ister 2	MJT out	put interrupt control (IMJTOCR3)	register 3
н'0080	0076	MJT output in (I	terrupt control reg MJTOCR4)	ister 4	MJT out	put interrupt control (IMJTOCR5)	register 5
н'0080	0078	MJT output in (I	terrupt control reg MJTOCR6)	ister 6	MJT out	put interrupt control (IMJTOCR7)	register 7
н'0080	007A	MJT input intended	errupt control regi IMJTICR0)	ster 0	MJT inp	ut interrupt control r (IMJTICR1)	register 1
Н'0080	007C	MJT input intended	errupt control regi IMJTICR2)	ster 2	MJT inp	ut interrupt control r (IMJTICR3)	register 3
Н'0080	007E	MJT input intended	errupt control regi IMJTICR4)	ster 4		reserved	

Fig. 13.3.1 Register map related to interrupt controller (ICU)

13.3 Registers related to ICU

13.3.1 Interrupt vector register (IVECT)

<Address : H'0080 0000>

D0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	D15
							IVEC	CT16							

<at reset : Undifined>

D	Bit name	Function R	W
0 to 15	IVECT16	When an interrupt is accepted, the low-order	×
	(ICU vector table address	16 bits of the ICU vector table address corresponding	
	low-order 16 bits)	to the accepted interrupt source are stored	

The interrupt vector register (IVECT) is used to store the low-order 16 bits of the ICU vector table address of an interrupt source when the interrupt is accepted.

The starting address of the interrupt handler of each internal peripheral I/O is written to the ICU vector table (addresses H'0000 0094 to H'0000 00DF) in advance. When an interrupt is accepted, the low-order 16 bits of the ICU vector table address corresponding to the accepted interrupt source are loaded in this IVECT register. The EIT handler reads the contents of the IVECT register with an LDH instruction and obtains the specified ICU vector table address.

When the IVECT register is read, the following operations (1) through (4) are automatically performed under hardware control.

- (1) Loading the newly accepted IMASK value (NEW_IMASK) into the IMASK register
- (2) Clearing the accepted interrupt request (level-triggering interrupt source not cleared)
- (3) Releasing the CPU from the interrupt request (EI)
- (4) Beginning internal processing (decision of interrupt priority) by starting the sequencer in the ICU

NOTE:

The interrupt vector register (IVECT) should not be read except by using the EIT handler (if the IE bit of the PSW register is cleared). Also the IVECT register should be read after the interrupt mask register (IMASK) is read with the EIT handler.

13.3 Registers related to ICU

<at reset:H'07>

D	Bit name	Function	R	W
0 to 4	Not assigned.		0	-
5 to 7	IMASK (Interrupt mask)	000: Maskable interrupt disabled		
		001: Level 0 interrupt acceptable		
		010: Level 0 to level 1 interrupt acceptable		
		011: Level 0 to level 2 interrupt acceptable		
		100: Level 0 to level 3 interrupt acceptable		
		101: Level 0 to level 4 interrupt acceptable		
		110: Level 0 to level 5 interrupt acceptable		
		111: Level 0 to level 6 interrupt acceptable		

W = - : Write invalid

The interrupt mask register (IMASK) is used to decide whether to accept an interrupt request or not according to its predetermined priority level (defined by the ILEVEL bits of each interrupt control register). If the interrupt vector register (IVECT) is read, a new mask value (NEW_IMASK) is loaded in the IMASK register.

When the IMASK register is written, the following operations (1) and (2) are automatically performed the under hardware control.

- (1) Releasing the CPU from the interrupt request (EI)
- (2) Beginning internal processing (decision of interrupt priority) by starting the sequencer in the ICU

NOTE:

The interrupt mask register (IMASK) should not be written except by using the EIT handler (if the IE bit of the PSW register is cleared).

13.3 Registers related to ICU

13.3.3 SBI control register (SBICR) <Address : H'0080 0006> D0 1 2 3 4 5 6 D7 SBIREQ D Bit name Function R W 0 to 6 0 Not assigned. -7 0: SBI not requested SBIREQ (SBI request) 1: SBI requested

W = -: Write invalid W = : Clear-only (see below)

SBI (system break interrupt) is the interrupt generated if a falling-edge trigger is input to the SBI pin. If SBI occurs, the SBI request bit (SBIREQ) of the SBI control register is set to 1. The SBIREQ bit cannot be set with software. The SBIREQ bit can be cleared by the following operations; however, this bit should not be cleared if no SBI request is generated.

• At clearing the SBIREQ bit, the bit is cleared to 0 continuously after the bit is set to 1. When the bit is not cleared to 0 continuously, the data before writing are held.

13.3 Registers related to ICU

13.3.4 Interrupt control register

A-D converter interrupt control register (IADCCR)	<address 006c="" :="" h'0080=""></address>
SIO0 transmit interrupt control register (ISIO0TXCR)	<address 006d="" :="" h'0080=""></address>
SIO0 receive interrupt control register (ISIO0RXCR)	<address 006e="" :="" h'0080=""></address>
SIO1 transmit interrupt control register (ISIO1TXCR)	<address 006f="" :="" h'0080=""></address>
SIO1 receive interrupt control register (ISIO1RXCR)	<address 0070="" :="" h'0080=""></address>
DMAC interrupt control register (IDMACCR)	<address 0071="" :="" h'0080=""></address>
MJT output interrupt control register 0 (IMJTOCR0)	<address 0072="" :="" h'0080=""></address>
MJT output interrupt control register 1 (IMJTOCR1)	<address 0073="" :="" h'0080=""></address>
MJT output interrupt control register 2 (IMJTOCR2)	<address 0074="" :="" h'0080=""></address>
MJT output interrupt control register 3 (IMJTOCR3)	<address 0075="" :="" h'0080=""></address>
MJT output interrupt control register 4 (IMJTOCR4)	<address 0076="" :="" h'0080=""></address>
MJT output interrupt control register 5 (IMJTOCR5)	<address 0077="" :="" h'0080=""></address>
MJT output interrupt control register 6 (IMJTOCR6)	<address 0078="" :="" h'0080=""></address>
MJT output interrupt control register 7 (IMJTOCR7)	<address 0079="" :="" h'0080=""></address>
MJT input interrupt control register 0 (IMJTICR0)	<address 007a="" :="" h'0080=""></address>
MJT input interrupt control register 1 (IMJTICR1)	<address 007b="" :="" h'0080=""></address>
MJT input interrupt control register 2 (IMJTICR2)	<address 007c="" :="" h'0080=""></address>
MJT input interrupt control register 3 (IMJTICR3)	<address 007d="" :="" h'0080=""></address>
MJT input interrupt control register 4 (IMJTICR4)	<address 007e="" :="" h'0080=""></address>

13.3 Registers related to ICU

D0	1	2	3	4	5	6	D7
(D8	9	10	11	12	13	14	D15)
	1		IREQ			ILEVEL	

			<at reset<="" th=""><th>:H'07></th></at>	:H'07>
D	Bit name	Function	R	W
0 to 2	Not assigned.		0	-
(8 to 10)				
3	IREQ (Interrupt request)	0: Interrupt not requested		
(11)		1: Interrupt requested		
4	Not assigned.		0	-
(12)				
5 to 7	ILEVEL (Interrupt priority level)	000: Interrupt priority level 0		
(13 to 15)		001: Interrupt priority level 1		
		010: Interrupt priority level 2		
		011: Interrupt priority level 3		
		100: Interrupt priority level 4		
		101: Interrupt priority level 5		
		110: Interrupt priority level 6		
		111: Interrupt priority level 7 (Interrupt dis	sabled)	
		W = - : Write invalid		
		W = : Can be set or cleared with soft	ware only	/
		when interrupt sources are of ed	lge-trigge	r type

(1) IREQ (Interrupt request bit D3 or D11)

If any interrupt request of an internal peripheral I/O is generated, the IREQ bit of the associated interrupt control register is set to 1 with hardware.

This bit can be set or cleared with software only when interrupt sources are of edge-trigger type (cannot be done if level-trigger type). If the interrupt vector register (IVECT) is read, IREQ bits that have been set by the interrupt requests of edge-triggering interrupt sources only are automatically cleared (IREQ bits set by those of level-triggering interrupt sources not cleared).

If setting this bit by interrupt request generation and clearing with software occur simultaneously, software clearing has precedence, and if setting by interrupt request generation and clearing by a read of IVECT occur at the same time, also the latter has.

(2) ILEVEL (Interrupt priority level bits D5 to D7 or D13 to D15)

The ILEVEL bits of each interrupt control register define the priority level of the interrupt request of the associated internal peripheral I/O. Set these bits to 7 if any interrupt of the peripheral I/O is disabled, and to 0 to 6 if enabled.

If interrupts occur, control determines their priorities depending on their ILEVEL values and compares each ILEVEL value with the IMASK value to decide whether to issue an EI request to the CPU or to suspend the request.

Table 13.3.1 shows the relation between the ILEVEL values and the acceptable IMASK values.

ILEVEL value	Acceptable IMASK values
0 (ILEVEL = "000")	IMASK = 1 to 7
1 (ILEVEL = "001")	IMASK = 2 to 7
2 (ILEVEL = "010")	IMASK = 3 to 7
3 (ILEVEL = "011")	IMASK = 4 to 7
4 (ILEVEL = "100")	IMASK = 5 to 7
5 (ILEVEL = "101")	IMASK = 6 to 7
6 (ILEVEL = "110")	IMASK = 7
7 (ILEVEL = "111")	Not acceptable (interrupt disabled)

Table 13.3.1 Relation between ILEVEL values and acceptable IMASK values

13.4 ICU vector table

13.4 ICU vector table

The ICU vector table is loaded with the starting address of the interrupt handler in each internal peripheral I/O, and the following table addresses are assigned to 19 interrupt sources.

Interrupt source	ICU vector table address
MJT input interrupt 4	H'0000 0094 to H'0000 0097
MJT input interrupt 3	H'0000 0098 to H'0000 009B
MJT input interrupt 2	H'0000 009C to H'0000 009F
MJT input interrupt 1	H'0000 00A0 to H'0000 00A3
MJT input interrupt 0	H'0000 00A4 to H'0000 00A7
MJT output interrupt 7	H'0000 00A8 to H'0000 00AB
MJT output interrupt 6	H'0000 00AC to H'0000 00AF
MJT output interrupt 5	H'0000 00B0 to H'0000 00B3
MJT output interrupt 4	H'0000 00B4 to H'0000 00B7
MJT output interrupt 3	H'0000 00B8 to H'0000 00BB
MJT output interrupt 2	H'0000 00BC to H'0000 00BF
MJT output interrupt 1	H'0000 00C0 to H'0000 00C3
MJT output interrupt 0	H'0000 00C4 to H'0000 00C7
DMAC interrupt	H'0000 00C8 to H'0000 00CB
SIO1 receive interrupt	H'0000 00CC to H'0000 00CF
SIO1 transmit interrupt	H'0000 00D0 to H'0000 00D3
SIO0 receive interrupt	H'0000 00D4 to H'0000 00D7
SIO0 transmit interrupt	H'0000 00D8 to H'0000 00DB
A-D converter interrupt	H'0000 00DC to H'0000 00DF

Table 13.4.1 ICU vector table addresses

13.4 ICU vector table

Address	+0 number +1 number D7 D8 D15
H'0000 0094	MJT input interrupt 4 handler's starting address (A0 to A15)
н'0000 0096	MJT input interrupt 4 handler's starting address (A16 to A31)
H'0000 0098	MJT input interrupt 3 handler's starting address (A0 to A15)
H'0000 009A	MJT input interrupt 3 handler's starting address (A16 to A31)
H'0000 009C	MJT input interrupt 2 handler's starting address (A0 to A15)
H'0000 009E	MJT input interrupt 2 handler's starting address (A16 to A31)
H'0000 00A0	MJT input interrupt 1 handler's starting address (A0 to A15)
H'0000 00A2	MJT input interrupt 1 handler's starting address (A16 to A31)
H'0000 00A4	MJT input interrupt 0 handler's starting address (A0 to A15)
H'0000 00A6	MJT input interrupt 0 handler's starting address (A16 to A31)
H'0000 00A8	MJT output interrupt 7 handler's starting address (A0 to A15)
H'0000 00AA	MJT output interrupt 7 handler's starting address (A16 to A31)
H'0000 00AC	MJT output interrupt 6 handler's starting address (A0 to A15)
H'0000 00AE	MJT output interrupt 6 handler's starting address (A16 to A31)
н'0000 00В0	MJT output interrupt 5 handler's starting address (A0 to A15)
H'0000 00B2	MJT output interrupt 5 handler's starting address (A16 to A31)
H'0000 00B4	MJT output interrupt 4 handler's starting address (A0 to A15)
н'0000 00В6	MJT output interrupt 4 handler's starting address (A16 to A31)
H'0000 00B8	MJT output interrupt 3 handler's starting address (A0 to A15)
H'0000 00BA	MJT output interrupt 3 handler's starting address (A16 to A31)
H'0000 00BC	MJT output interrupt 2 handler's starting address (A0 to A15)
H'0000 00BE	MJT output interrupt 2 handler's starting address (A16 to A31)
H'0000 00C0	MJT output interrupt 1 handler's starting address (A0 to A15)
H'0000 00C2	MJT output interrupt 1 handler's starting address (A16 to A31)
H'0000 00C4	MJT output interrupt 0 handler's starting address (A0 to A15)
H'0000 00C6	MJT output interrupt 0 handler's starting address (A16 to A31)

Note: Starting addresses are mapped into the internal ROM area in 32 bits wide except in the processor mode.

Fig. 13.4.1 Memory map of ICU vector table (1/2)

13.4 ICU vector table

H'0000 00C8	DMAC interrupt handler's	starting address (A0 to A15)	
H'0000 00CA	DMAC interrupt handler's	starting address (A16 to A31)	
H'0000 00CC	SIO1 receive interrupt har	dler's starting address (A0 to A15)
H'0000 00CE	SIO1 receive interrupt har	dler's starting address (A16 to A3	1)
H'0000 00D0	SIO1 transmit interrupt ha	ndler's starting address (A0 to A1	5)
H'0000 00D2	SIO1 transmit interrupt ha	ndler's starting address (A16 to A	3)
H'0000 00D4	SIO0 receive interrupt har	dler's starting address (A0 to A15)
H'0000 00D6	SIO0 receive interrupt har	dler's starting address (A16 to A3	1)
H'0000 00D8	SIO0 transmit interrupt ha	ndler's starting address (A0 to A1	5)
H'0000 00DA	SIO0 transmit interrupt ha	ndler's starting address (A16 to A	31)
H'0000 00DC	A-D conversion interrupt h	andler's starting address (A0 to A	15)
H'0000 00DE	A-D conversion interrupt h	andler's starting address (A16 to a	A31)
Note: Starting	addresses are mapped into the	internal ROM area in 32 bits wide	except in

13.5 Interrupt operation

13.5.1 Acceptance of interrupts from internal peripheral I/Os

Any interrupt from internal peripheral I/Os can be accepted if its ILEVEL value specified by the associated interrupt control register has higher priority than the IMASK value of the interrupt mask register. When several interrupt requests occur at the same time, however, their acceptance is determined by the following procedure:

- ① Compare the ILEVEL value specified by the interrupt control register of each internal peripheral I/O with the others.
- ⁽²⁾ Select the interrupt source with the highest priority defined by hardware if there are interrupts with the same ILEVEL value.
- ③ Compare the ILEVEL value of the selected interrupt with the IMASK value.

When several interrupt requests occur at the same time, the highest priority specified by the ILEVEL of each interrupt control register, and the highest interrupt is selected. If there are interrupts with the same ILEVEL value the interrupt source is selected with the highest priority defined.

If the finally selected interrupt has higher priority than the IMASK value, an EI request is issued to the CPU. Interrupt request masks are specified by the interrupt mask register of each internal peripheral I/O, the ILEVEL bits of each interrupt control register (disabled at level 7), and the IE bit of the PSW register.

Fig. 13.5.1 Example of priority determination at interrupt acceptance

13.5 Interrupt operation

Table 13.5.1 Hardware-fixed priority level							
Priority	Interrupt source	ICU vector table address	Number of input source				
High	MJT Input Interrupt 4 (IRQ12)	H'0000 0094 to H'0000 0097	4				
	MJT Input Interrupt 3 (IRQ11)	H'0000 0098 to H'0000 009B	4				
Т	MJT Input Interrupt 2 (IRQ10)	H'0000 009C to H'0000 009F	8				
	MJT Input Interrupt 1 (IRQ9)	H'0000 00A0 to H'0000 00A3	3				
	MJT Input Interrupt 0 (IRQ8)	H'0000 00A4 to H'0000 00A7	5				
	MJT Output Interrupt 7 (IRQ7)	H'0000 00A8 to H'0000 00AB	2				
	MJT Output Interrupt 6 (IRQ6)	H'0000 00AC to H'0000 00AF	2				
	MJT Output Interrupt 5 (IRQ5)	H'0000 00B0 to H'0000 00B3	1				
	MJT Output Interrupt 4 (IRQ4)	H'0000 00B4 to H'0000 00B7	4				
	MJT Output Interrupt 3 (IRQ3)	H'0000 00B8 to H'0000 00BB	2				
	MJT Output Interrupt 2 (IRQ2)	H'0000 00BC to H'0000 00BF	6				
	MJT Output Interrupt 1 (IRQ1)	H'0000 00C0 to H'0000 00C3	2				
	MJT Output Interrupt 0 (IRQ0)	H'0000 00C4 to H'0000 00C7	4				
	DMAC Interrupt	H'0000 00C8 to H'0000 00CB	5				
	SIO1 Receive Interrupt	H'0000 00CC to H'0000 00CF	1				
	SIO1 Transmit Interrupt	H'0000 00D0 to H'0000 00D3	1				
	SIO0 Receive Interrupt	H'0000 00D4 to H'0000 00D7	1				
▼	SIO0 Transmit Interrupt	H'0000 00D8 to H'0000 00DB	1				
Low	A-D converter Interrupt	H'0000 00DC to H'0000 00DF	1				

Table 13.5.2	Relation between	ILEVEL	values and	acceptable	IMASK values
--------------	-------------------------	--------	------------	------------	---------------------

ILEVEL value Acceptable IMASK values	
0 (ILEVEL = "000") IMASK = 1 to 7	
1 (ILEVEL = "001") IMASK = 2 to 7	
2 (ILEVEL = "010") IMASK = 3 to 7	
3 (ILEVEL = "011") IMASK = 4 to 7	
4 (ILEVEL = "100") IMASK = 5 to 7	
5 (ILEVEL = "101") IMASK = 6 to 7	
6 (ILEVEL = "110") IMASK = 7	
7 (ILEVEL = "111") Not acceptable (interrupt disabled)	

13.5.2 Interrupt handler processing of internal peripheral I/Os

(1) Branches to interrupt handlers

When the CPU accepts an interrupt, it performs hardware preprocessing and allows program to branch into the EIT vector entry as described in Section 4.3 "Processing sequence of EIT". The EIT vector entry of the external interrupt (EI) is located at address H'0000 0080, where the branch instruction to the beginning of the interrupt handler program for the external interrupt is written (not the branch address).

(2) Processing by interrupt handlers

First, save the contents of the BPC register, the PSW register, and the general-purpose registers on the stack.

Secondly, read the contents of the interrupt mask register (IMASK) to save on the stack, and then read the interrupt vector register (IVECT). Note that IMASK should be read prior to the read of IVECT. Either a write of IMASK or a read of IVECT results in clearing the interrupt request to the CPU and preparing the acceptance of the next interrupt. In addition, a read of IVECT causes NEW_MASK to be loaded in IMASK and the accepted interrupt request to be cleared (level-triggering interrupt source not cleared).

When an interrupt is accepted, the low-order 16 bits of the ICU vector table address corresponding to the accepted interrupt source are stored in the IVECT register. The EIT handler reads the contents of the IVECT register with a signed halfword LOAD instruction (an LDH instruction) and obtains the specified ICU vector table address.

Thus, the starting address of the interrupt handler of each internal peripheral I/O is written to the ICU vector table (addresses H'0000 0094 to H'0000 00DF) in advance. program branches to this readout address to perform each handler processing.

To return to the main program, clear to 0 the IE bit of the PSW register to disable interrupts and restore the IMASK value.

(3) Specifying interrupt sources

If there are a number of interrupt sources in each internal peripheral I/O, specify the interrupt source by each interrupt status register.

(4) Use of multiple interrupts

In order to use multiple interrupts in each interrupt handler, save the contents of the BPC, PSW, IMASK and general purpose registers on the stack, and thereafter set the IE bit of the PSW register to 1 to enable interrupt request.

13.5 Interrupt operation

13.6 System break interrupt (SBI)

13.6 System break interrupt (SBI)

13.6.1 Acceptance of SBI

SBI is the interrupt used in such case of emergency that any fault is detected in power supply or by the external watchdog timer. This interrupt can always be accepted at a falling edge of the SBI signal regardless of whether the IE bit of the PSW register is set or cleared and cannot be masked.

13.6.2 Handler processing of SBI

After taking measures for SBI, control should not resume the interrupted program, but be terminated or reset.

Fig. 13.6.1 SBI operation

13.6 System break interrupt (SBI)

MEMORANDUM

CHAPTER 14 Wait controller

- 14.1 Summary of wait controller
- 14.2 Registers related to wait controller
- 14.3 Wait controller operation

14.1 Summary of wait controller

14.1 Summary of wait controller

The wait controller controls the number of wait cycles that are inserted to bus cycles at the access to the expanded external area.

The summary of the wait controller is shown Table 14.1.1.

Table	14.1.1	Outline	of	wait	controller
		••••••	•••		••••••

Item	Description					
Object space	The following spaces can be controlled according to the operating modes.					
	Single chip mode : no object space (setting of wait cont					
	Expanded external mode	: CS0 area (384K bytes) and CS1 area (512K bytes)				
	Processor mode	: CS0 area (512K bytes) and CS1 areas (512K bytes)				
Number of Waits	To be inserted software-programmable 1-4 wait cycles plus an arbitrary number of					
	wait cycles determined input placed on the \overline{WAIT} pin can be inserted (one wait cycle					
	is the least to be inserted to bus cycles at the external access).					

In the expanded external mode and the processor mode, two chip select signals ($\overline{CS0}$ and $\overline{CS1}$) select an address area each in the expanded external area. Two areas selected by these chip select signals are called the CS0 and the CS1 area respectively and address-mapped shown in Figure 14.1.1.

Fig. 14.1.1 Address map of CS0 and CS1 areas

WAIT CONTROLLER

14.1 Summary of wait controller

When the expanded external area is accessed, the wait controller controls the number of waits to be inserted to bus cycles based on the software-programmed number and the pulse width LOW to be placed on the $\overline{\text{WAIT}}$ pin.

The software-programmable number of waits is 1-4 (one wait is the least to be inserted to bus cycles at the external access).

If the \overline{WAIT} pin is pulled LOW at the end of the software-programmed internal waits, they are prolonged. These prolonged wait cycles end when the \overline{WAIT} pin is driven HIGH, and another bus cycles begin.

Expanded external area	Address	Number of waits to be inserted
CS0 area	H'0002 0000 to H'0007 FFFF	Software-programmable 1-4 wait cycles plus
	(External expanded mode)	an arbitrary number of wait cycles determined
	H'0000 0000 to H'0007 FFFF	by the pulse width LOW placed on the \overline{WAIT}
	(Processor mode)	pin can be inserted
		(software-programmed waits have precedence)
CS1 area	H'0008 0000 to H'000F FFFF	Software-programmable 1-4 wait cycles plus
	(External expanded mode	an arbitrary number of wait cycles determined
	and Processor mode)	by the pulse width LOW placed on the \overline{WAIT}
		pin can be inserted
		(software-programmed waits have precedence)

Table 14.1.2 Number of waits controllable by wait controller

WAIT CONTROLLER

14.2 Registers related to wait controller

14.2 Registers related to wait controller

The register map related to the wait controller is shown in Figure 14.2.1.

Adtoor		10 number			.1 sumber	
Address	D0	iedmun 0+	D7	D8	+ i number	D15
H'0080 01	80	Wait Cycle Control Registe (WTCCR)	er		(see note)	
N	ote: Not i	mplemented (read back as	eithe	er 0 or 1)	

Fig. 14.2.1 Register map related to wait controller

WAIT CONTROLLER

14.2 Registers related to wait controller

14.2.1 Wait cycle control register (WTCCR)

<Address : H'0080 0180>

			< at reset : H'00>
D	Bit name	Function	R W
0, 1	Not assigned.		0 -
2, 3	CSOWTC	00: 4 waits (at reset)	
	(CS0 wait cycle control)	01: 3 waits	
		10: 2 waits	
		11: 1 wait	
4, 5	Not assigned.		0 -
6, 7	CS1WTC	00: 4 waits (at reset)	
	(CS1 wait cycle control)	01: 3 waits	
		10: 2 waits	
		11: 1 wait	

W = -: Write invalid

14.3 Wait controller operation

14.3 Wait controller operation

Figure 14.3.1 shows an example of the wait controller operation at the external bus access.

CHAPTER 15 REAL-TIME DEBUGGER

- 15.1 Summary of real-time debugger
- 15.2 RTD pin functions
- 15.3 RTD operation
- 15.4 Connection to host computer
REAL-TIME DEBUGGER

15.1 Summary of real-time debugger (RTD)

15.1 Summary of real-time debugger (RTD)

The real-time debugger is the serial I/O used to read from and write to the internal RAM of the M32150F4TFP from the outside of the chip. The RTD controls reads and writes by receiving commands from the external circuit through serial communications. RTD operation is not visible to the M32R CPU because data is transmitted between the RTD and the internal RAM using the dedicated bus.

Item	Description
Transfer mode	Synchronized serial I/O
Generation of transfer clock	Generated at external host
Transmit/receive data length	32 bits fixed
Order of bit transfer	LSB first
Maximum transfer rate	2M bps
Input-output pins	4 (RTDTXD, RTDRXD, RTDACK, RTDCLK)
Commands	Four functions:
	Continuous monitor
	 Real-time output of RAM contents
	 Forced rewrite of RAM contents (with verify function)
	 Return from runaway

Table 15.1.1 Outline of RTD

15.2 RTD pin functions

The RTD pin functions are shown in Table 15.2.1.

Table 15.2.1 RTD pin function	ons
-------------------------------	-----

Pin name	Input/output type	Function			
RTDTXD	Output	RTD serial data output			
RTDRXD	Input	RTD serial data input			
RTDACK	Output	Outputs a pulse width I	_OW synchronized to the beginning clock of an		
		output data word: the pu	output data word: the pulse width LOW outputted indicates the type command		
		or data that RTD has received.			
		1 clock	: VER command (Continuous monitor)		
		2 clocks	: RDR command (Real-time output of RAM contents)		
		3 clocks	: WRR command (Forced rewrite of RAM contents)		
			or rewritten data		
		No less than 4 clocks	: RCV command (Return from runaway)		
RTDCLK	Input	RTD transfer clock inpu	ıt		

15.3 RTD operation

15.3.1 Summary of RTD operation

The RTD operation is controlled by externally inputted commands, which can be specified by bits 16 to 19 (see note 1)of the RTD receive data.

Tabl	le 15.3.1 RTD commands								
RTD receive data		а	Command						
b19	b18	b17	b16	mnemonic	RTD function				
0	0	0	0	VER (VERify)	Continuous monitor				
0	1	0	0						
0	1	0	1						
0	1	1	0						
0	0	1	0	PDR (ReaD RAM)	Real-time output of RAM contents				
0	0	1	1	WRR (WRite RAM)	Forced rewrite of RAM contents (with verify function)				
1	1	1	1	RCV (ReCoVer)	Return from runaway (see note 2 and 3)				
0	0	0	1	Reserved (Do not use)					

(see note 1)

- **Notes 1:** Bit 19 of the RTD receive data is actually not stored in the command register and is "Don't Care" except for specifying the RCV command (bits 16 to 18 are effective in specifying commands).
 - 2: The RCV command should be transmitted twice successively.
 - **3:** To specify the RCV command, the other bits than bits 16 to 19 (i.e. bits 0 to 15 and 20 to 31) should be set to 1s.

15.3 RTD operation

15.3.2 Operation of real-time output of RAM contents (RDR)

If the RDR command is issued, the RTD can transfer the contents of the internal RAM to the external circuit without holding the internal bus of the CPU. Because the RTD reads the data of the internal RAM during the period that data is not transferred between the CPU and the RAM, the CPU does not bear any service overhead.

The address to be read from the internal RAM can be specified only at word boundaries (the low-order 2 bits of the address specified by a command are ignored).

Data is transferred from the RAM 32 bits at a time.

Fig. 15.3.1 RDR command data format

REAL-TIME DEBUGGER

15.3 RTD operation

15.3 RTD operation

15.3.3 Operation of forced rewrite of RAM contents (WRR)

When the WRR command is issued, the RTD rewrites the contents of the internal RAM forcibly without holding the internal bus of the CPU. Because the RTD writes data to the internal RAM during the period that data transfer is suspended between the CPU and the RAM, the CPU does not bear any service overhead.

The address to be read from the internal RAM can be specified only at word boundaries (the low-order 2 bits of the address specified by a command are ignored). Data is written to the RAM 32 bits at a time. The external host transmits a command and an address at the first frame and the data to be written at the second frame.

The data are written from RTD to the internal RAM at the third frame after the data to be written are received.

Data are written from RTD to the internal RAM at third frame after the writing data are received.

REAL-TIME DEBUGGER

15.3 RTD operation

The RTD reads the data at the specified address before it is written and again reads it while remaining at the same address immediately after the write (thus verified). The read data is output in the timing shown in Figure 15.3.5.

Fig. 15.3.5 WRR command operation

15.3 RTD operation

15.3.4 Continuous monitor operation (VER)

When the VER command is issued, the RTD outputs the data at the address that has been accessed with the instruction executed immediately before the reception of the command (regardless of a read or write instruction).

Fig. 15.3.6 VER command data format

Fig. 15.3.7 VER command operation

REAL-TIME DEBUGGER

15.3 RTD operation

15.3.5 Operation of return from runaway (RCV)

In case of entering runaway, the RTD can be forced to return from it without system reset by issuing the RCV command. Note that this command must be issued twice successively, and bits 20 to 31 of any command issued subsequent to RCV be set to all 1s.

Fig. 15.3.8 RCV command data format

Fig. 15.3.9 RCV command operation

15.3 RTD operation

15.3.6 Reset of RTD

The RTD can be reset with system reset (the RESET signal input). Table 15.3.2 shows the states of the output pins associated with the RTD after system reset.

Table 15.3.2	States	of	RTD	nin	after	system	reset
	Julies	UI.	NID	pill	ancer	System	IESEL

Pin name	State
RTDACK	Output HIGH
RTDTXD	Output HIGH

The transfer of the first command issued after resetting the RTD will be started by transferring data to the RTDRXD pin synchronized to the falling edge of RTDCLK.

Fig. 15.3.10 Command transfer to RTD after system reset

REAL-TIME DEBUGGER

15.4 Connection to host computer

15.4 Connection to host computer

The host computer generates the clock for synchronous communications to transfer data through synchronous serial interface.

A connection example between the RTD and the host is shown in Figure 15.4.1.

REAL-TIME DEBUGGER

15.4 Connection to host computer

Generally, serial interfaces are used to transfer 8-bit data at a time, so that the communication with the RTD whose 1 frame data is fixed 32 bits wide is performed four times 8 bits at a time. Normal communication can be acknowledged with the RTDACK level.

The RTDACK signal will go "L" and, for example, remain at the state for 1 clock after sending a VER command. When the serial interface has transferred 1 frame of 32-bit data and stopped sending the RTDCLK clock, if RTDACK is "L", the communication is acknowledged to be performed normally.

To identify the kind of transmit command, make use of an on-chip timer, which counts RTDCLK during RTDACK "L", or dedicated circuitry of G/A or FPGA (Field Programmable Gate Array).

		Next frame transfer
_	One frame of 32 bits transferred	~
RTDCLK		
RTDRXD	(8 bits) (8 bits) (8 bits)	
RTDTXD	••••• <u> </u>	
RTDACK		
	1	
	RTDACK "L" acknowledged.	

Fig. 15.4.2 Communications with host

CHAPTER 16 RAM BACKUP MODE

- 16.1 Summary
- 16.2 An example of RAM backup at the time of power shutoff
- 16.3 An example of RAM backup for low power consumption
- 16.4 Canceling RAM backup mode (wakeup)

16.1 Summary

16.1 Summary

RAM backup mode serves to hold the contents of internal RAM with the power shut off. The RAM backup mode is used for the two purposes given below.

•To back up the data held in the internal RAM when the power is shut off.

•To shut off the power supplied to the CPU with optional timing to reduce the low power consumption of system.

Applying a voltage of 2.0 to 5.5 V to the VDD pin for RAM backup and applying a voltage of 0 V to other pins causes M32150F4TFP to go into the RAM backup mode.

In the RAM backup mode, the CPU and the internal peripheral I/O devices are in the stopped state with contents of internal RAM being held. In addition, in the RAM backup mode, pins other than the VDD pin are at level L, so low power consumption can be achieved effectively.

16.2 An example of RAM backup at the time of power shutoff

An example of RAM backup circuit at the time of power shutoff is shown in Figure 16.2.1. Here is an example of RAM backup in which this circuit is used.

Fig. 16.2.1 An example of RAM backup circuit at the time of power shutoff

16.2 An example of RAM backup at the time of power shutoff

16.2.1 The normal state of operation

Figure 16.2.2 shows the normal state of operation. Under normal operating conditions, an H level is input either to the \overline{SBI} pin, which is used for detecting the RAM backup signal, or to the ANi pin (i = 0 to 15).

Fig. 16.2.2 The normal state of operation

RAM BACKUP MODE

16.2 An example of RAM backup at the time of power shutoff

16.2.2 The state at the time of RAM backup

Figure 16.2.3 shows the state of the RAM backup at the time of power shutoff. If the power is shut off (see note), a current is supplied from the battery for backup by the power source-monitoring IC. Also, an L level is output from the pin of power source-monitoring IC for the power shutoff detection signal to turn either the SBI pin or the ANi pin to the level L, as a result, a RAM backup signal is generated (① in Fig. 16.2.3). Prepare the settings given below to make RAM backup mode effective.

(1) Make data for checking, when the processor returned from RAM backup mode to normal operation mode, whether data in RAM had been properly held (2 in Fig. 16.2.3).

(2) To achieve low power consumption of M32150F4TFP, set every program I/O port to be in input mode (or output an L level in output mode) (③ in Fig. 16.2.3).

Steps (1) and (2) above cause the voltage of VDD pin to become 2.0 V to 5.5 V and other voltages of pins to become 0 V, and M32150F4TFP goes into the RAM backup mode (in Fig. 16.2.3).

Note: Be sure to determine power shutoff detection depending on the potential of "DC IN (the input side of the regulator)".

16.3 An example of RAM backup for low power consumption

Figure 16.3.1 shows an example of a RAM backup circuit for low power consumption. Here is an example of RAM backup for low power consumption in which this circuit is used.

16.3.1 The normal state of operation

Figure 16.3.2 shows the normal state of operation. Under normal operating conditions, an H level is output from the external circuit that outputs the RAM backup signal. An H level is input either to the \overline{SBI} pin, which is used for detecting the RAM backup signal, or to the ANi (i = 0 to 15) pin.

Output an H level from port X, which is a pin to be connected to the base of transistor. This processing turns the base voltage of transistor IB to the level H, and a current is supplied from the power source to the VCC pin via the transistor.

Fig. 16.3.2 The state at the time of normal operation

16.3.2 The state at the time of RAM backup mode

Figure 16.3.3 shows the state at the time of RAM backup mode, and Figure 16.3.4 shows the RAM backup sequence. If an L level is output from an external circuit, an L level is input either to the SBI pin or the ANi pin. Inputting an L level to these pins generates a RAM backup signal (A, ① in Fig. 16.3.3). Prepare the settings given below to make the RAM backup mode effective.

(1) Make data for checking, when the processor returned from RAM backup mode to normal operation mode, whether RAM data had been properly held (2 in Fig. 16.3.3).

(2) To achieve low power consumption, set every programmable I/O port except port X to input mode (or output an L level in output mode) (③ in Fig. 16.3.3).

(3) Set port X in input mode (B, in Fig. 16.3.3). This turns the base voltage of transistor IB to the level L, and no current flows from the power source to the VCC pin via the transistor (C in Fig. 16.3.3), so the current supply to the VCC pin stops (D in Fig. 16.3.3).

Steps (1) through (3) above cause the voltage of VDD pin to become 5 V – 10% and voltage of other pin to become 0 V, and M32150F4TFP goes into RAM backup mode (in Fig. 16.3.3).

Fig. 16.3.3 The state of RAM backup at the time of low power consumption

RAM BACKUP MODE

16.3 An example of RAM backup for low power consumption

Fig. 16.3.4 An example of RAM backup sequence for low power consumption

16.3.3 Notes for turning the power on

In switching port X from input mode to output mode after turning the power on, be careful of the points given below.

If the user switches port X to output mode with no data set in the port X data register, the initial output level of port turns indeterminate. So switch port X to output mode after having set the output level H to the port X data register. If the user does not follow these steps, there can be instances in which the port output turns to L as soon as the user sets the port output as it stands after oscillation stabilizes and the processor goes into the RAM backup mode as well.

16.4 Canceling RAM backup mode (wakeup)

16.4 Canceling RAM backup mode (wakeup)

The process for canceling RAM backup mode and for returning to the normal state of operation is termed a wakeup process. Figure 16.4.1 shows its example.

Inputting reset launches the wakeup process, which is given below.

- (1) Execute the reset operation (1) in Fig. 16.4.1). For details, refer to Chapter 6 "Reset".
- (2) Set port X to output mode, and have it output an H level (2 in Fig. 16.4.1).(see note)
- (3) Evaluate the contents of data, which is made in RAM backup mode, for checking (3) in Fig. 16.4.1).
- (4) If by the result of evaluation at step (3) the data of RAM is not saved correctly, then initialize the contents of RAM (in Fig. 16.4.1).
 - If by the result of evaluation at step (3) the data of RAM is saved correctly, then use the saved data in a program.
- (5) After initialize individual particulars (5) in Fig. 16.4.1), then return to the main routine (» in Fig. 16.4.1).
- **Note:** No setting in port X is required in carrying out the wakeup process in RAM backup mode at the time of power shutoff.

Fig. 16.4.1 Wakeup process

CHAPTER 17 OSCILLATION CIRCUIT

17.1 Oscillation circuit

17.1 Oscillation circuit

17.1 Oscillation circuit

M32150F4TFP incorporates an oscillation circuit that supplies operation clock to the CPU core, built-in peripheral I/Os, and to internal memory. The clock resulting from multiplying the frequency entered to the clock input pin (XIN) by 2 using the internal PLL circuit becomes the system clock (BCLK).

17.1.1 An example of oscillation circuit

Externally attaching a ceramic resonator (or a crystal oscillator) between the XIN pin and the XOUT pin allows the user to make up a clock oscillation circuit. Fig. 17.1.1 shows an example of system clock generation circuit indicating a circuit to which a resonator is externally attached and a circuit connected to the PLL circuit's control pin (VCNT). Set constants such as Rf, CIN, COUT, Rd(, etc.) to values the manufacturers of the resonator and the crystal oscillator recommend.

If the user intends to enter a clock from outside using no oscillation circuit, enter the clock signal to the XIN pin, and leave the XOUT pin open.

17.1.2 Output function of the system clock

The user can output from the BCLK pin the clock having a frequency twice as high as that of the input clock. The BCLK pin and port P70 share a single pin. To output the system clock, set D8 of the P7 operation mode register (P7MOD) to 1.

P7 operation mode register (P7MOD) <Add

<Address : H'0080 0747>

D0	1	2	3	4	5	6	D7
P70MOD	P71MOD	P72MOD	P73MOD	P74MOD	P75MOD	P76MOD	P77MOD

			<at :="" h'00="" reset=""></at>
D	Bit name	Function	R W
8	P70MOD	0: P70	?
	(Port P70 operation mode)	1: BCLK	
9	P71MOD	0: P71	?
	(Port P71 operation mode)	1: WAIT	
10	P72MOD	0: P72	?
	(Port P72 operation mode)	1: HREQ	
11	P73MOD	0: P73	?
	(Port P73 operation mode)	1: HACK	
12	P74MOD	0: P74	?
	(Port P74 operation mode)	1: RTDTXD	
13	P75MOD	0: P75	?
	(Port P75 operation mode)	1: RTDRXD	
14	P76MOD	0: P76	?
	Port P76 operation mode)	1: RTDACK	
15	P77MOD	0: P77	?
	(Port P77 operation mode)	1: RTDCLK	

R = ? : Undefined read out value

17.1 Oscillation circuit

17.1.3 Oscillation stabilization time when the power is turned on

An oscillation circuit comprising a ceramic resonator (or a crystal oscillator) is subject to a period in which its oscillation is not stable after the power is turned on. For this reason, generate oscillation stabilization time adaptable to the conditions of the oscillation circuit to use.

Figure 17.1.2 shows oscillation stabilization time when the power is turned on.

Fig.17.1.2 Oscillation stabilization time when the power is turned on

CHAPTER 18 ELECTRICAL CHARACTERISTICS

- 18.1 Absolute maximum ratings
- 18.2 Recommended operating conditions
- 18.3 DC characteristics
- 18.4 A-D conversion characteristics
- 18.5 AC characteristics

18.1 Absolute maximum ratings

18.1 Absolute maximum ratings

Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings value	Unit
VCC	Power source voltage	VDD ‡ VCC ‡ AVCC = OSC-VCC = VREF	-0.3 to 6.5	V
VDD	RAM power source voltage	VDD ‡ VCC ‡ AVCC = OSC-VCC = VREF	-0.3 to 6.5	V
AVCC	Analog power source voltage	VDD ‡ VCC ‡ AVCC = OSC-VCC = VREF	-0.3 to 6.5	V
OSC-VCC	PLL power source voltage	VDD ‡ VCC ‡ AVCC = OSC-VCC = VREF	-0.3 to 6.5	V
VREF	Analog standard	VDD ‡ VCC ‡ AVCC = OSC-VCC = VREF	-0.3 to 6.5	V
	power source voltage			
VPP	Flash writing/erasing standard	VDD ‡ VCC ‡ AVCC = OSC-VCC = VREF	-0.3 to 13.0	V
	power source voltage			
MOD1	Chip mode setting pin	VDD ‡ VCC ‡ AVCC = OSC-VCC = VREF	-0.3 to 13.0	V
VI	Input voltage		-0.3 to VCC + 0.3	V
VO	Output voltage		-0.3 to VCC + 0.3	V
Pd	Power consumption (see note)	Ta = 25 C, f(XIN) = 12.5 MHz/10 MHz	750/650	mW
TOPR	Operating temperature		-40 to 85	С
Tstg	Storage temperature		-65 to 150	С

Note : in single chip mode

18.2 DC characteristics

18.2 Recommended operating conditions

Recommen	ded operating conditions	VCC = 5.0 – 10 %, Ta	= - 40 to 8	5 C unles	s otherwise	e noted
Symbol		Parameter	Ratings value			Unit
			min.	typ.	max.	
VCC	Power source voltage		4.5	5.0	5.5	V
VDD	RAM power source voltag	ge		VCC		V
VPP	VPP power	at read only		VCC		V
	source voltage	at programming/erasing	11.4	12.0	12.6	
		(Ta = 0 C to 70 C)				
AVCC	Analog power source voltage			VCC		V
OSC-VCC	PLL power source voltage			VCC		V
VREF	Analog standard power source voltage			VCC		V
VIH	"H" input voltage	Port P0 to P15	0.8VCC		VCC	V
		Port P0, P1 (Only at external	0.43VCC		VCC	V
		expanded / processor mode), \overline{WAIT}				
VIL	"L" input voltage	Port P0 to P15	0		0.2VCC	V
		Port P0, P1 (Only at external	0		0.16VCC	V
		expanded / processor mode), \overline{WAIT}				
IOH (peak)	"H" peak output current F	P0 to P15 (see note 1)			-10	mA
IOH (avg)	"H" average output curre	ent P0 to P15 (see note 2)			-5	mA
IOL (peak)	"L" peak output current F	P0 to P15 (see note 1)			10	mA
IOL (avg)	"L" average output curre	nt P0 to P15 (see note 2)			5	mA
f(XIN)	External clock input frequ	iency	10		12.5	MHz

Note 1: Total output current of ports (peak) should be as follows.

| Port P0 + P1 | \pm 80 mA | Port P3 + P4 | \pm 80 mA | Port P2 + P15 | \pm 80 mA | Port P13 + P14 | \pm 80 mA | Port P6 + P7 + P8 | \pm 80 mA | Port P9 + P10 + P11 | \pm 80 mA

2: The average output current is the average value during 100 ms.

18.3 DC characteristics

18.3 DC characteristics

18.3.1 Electrical characteristics

Electrical ch	naracteristics $VCC = 5.0 V - 1$	0 %, Ta = - 40 to 85 C, f (XIN)	e 25 MHz	unless	otherwise	e noted
Symbol	Parameter	Test conditions	Ra	Ratings va		Unit
			min.	typ.	max.	
VOH	"H" output power source voltage	IOH = -2 mA	VCC – 1			V
VOL	"L" output power source voltage	IOL = 2 mA			0.45	V
VDD	RAM hold power source voltage	in normal operation mode	4.5		VCC	V
		in back up mode	2.0		5.5	
IIH	"H" input current	VI = VCC	-5		5	mA
IIL	"L" input current	VI = 0 V	-5		5	mA
ICCres	Power source current at reset	f (XIN) = 10.0 MHz		65		mA
	(see note 1)	f (XIN) = 12.5 MHz		75]
ICC	VCC power source current	f (XIN) = 10.0 MHz		80		mA
	in nomal operation mode	f (XIN) = 12.5 MHz		100]
IOSCVCC	OSCVCC power source current	f (XIN) = 10.0 MHz		11		mA
	in normal operation mode	f (XIN) = 12.5 MHz		14		
IDD	VDD power source current	f (XIN) = 10.0 MHz		2		mA
	in normal operation mode	f (XIN) = 12.5 MHz		2.5]
IDDstandby	RAM hold power source current	Ta = 25 C			1	mA
	(see note 2)	Ta = 85 C			20	
IAVCC	AVCC power source current	f (XIN) = 10.0 MHz		0.5		mA
	in normal operation mode	f (XIN) = 12.5 MHz		0.7		
IVREF	VREF power source current			0.5		mA
Vt+ – Vt–	Hysterisis (see note 3)	VCC = 5 V	1.0			V
	ADTRG, RTDCLK, RTDRXD,					
	SCLK0, SCLK1, RXD0, RXD1,					
	TCLK3 to TCLK0, TIN23 to TIN0,					
	RESET					
VT+-VT-	Hysterisis (see note 4)	VCC = 5V	0.3			V
	SBI, HREQ					

Notes 1: Reset state and single chip mode. Total current at VCC = VDD = AVCC = VREF = OSCVCC 2: VCC = AVCC = VREF = OSCVCC = VSS

- **3:** Pins except for RESET are double function.
- 4: HREQ is double function pins

18.3 DC characteristics

18.3.2 Electrical characteristics related to flash

Electrical	Electrical characteristics related to flash $VCC = 5.0 V - 10 \%$, Ta = 0 to 70 C unless otherwise noted						
Symbol	Parameter	Test	Limits			Unit	
		conditions	min.	typ.	max.		
lpp1	VPP power source current (at programinng)				50	mA	
lpp2	VPP power source current (at erasing)				30	mA	

18.4 A-D conversion characteristics

18.4 A-D conversion characteristics

A-D conve	ersion characteristi	cs AVCC = VREF = 5. ²	12 V , Ta = 25 C, f	⁻ (XIN) = 12	2.5 MHz 🛛	unless otherv	vise noted
Symbol	Parameter		Test		Limits		Unit
			conditions	min.	typ.	max.	
_	Resolution		VREF = VCC			10	Bits
_	Absolute accurac	cy (see note 1)				- 3	LSB
_	Offset error					- 2	LSB
_	Fullscale error		(see note 2)			- 2	LSB
TCONV	Exchange time	in normal rate mode		299			Cycle
		in double rate mode		173			number
IIAN	Analog input leek	current	(see note 3)	-200		200	nA
Rs	Impedance of all	owable signal source				10	kw
						(see note 4)	

Notes 1: The absolute accuracy indicates the accuracy of output code including all error source (included quantum errors) to analog input of A-D converter.

Absolute accuracy = Output code - (Analog input voltage ANi/1 LSB)

1 LSB = 5 mV (at AVCC = VREF = 5.12 V)

- 2: The slippage from ideal 10-bit A-D conversion characteristics at state without adjusting offset errors
- 3: Input leek current of AN0 to AN15 at stationaly state of A-D converter.

Condition of Input voltage : 0 \pounds VIAN \pounds AVCC

- Temparature condition : Ta = -40 to 85 C
- **4:** The maximum value of the impedance of the allowable signal source is dependent on using state (external circuit and cycle executed A-D conversion).Especially, in case of executing A-D conversion under the high impedance of the signal source, the user must test enough whether the conversion accuracy is gotten.

18.5 AC characteristics

18.5.1 Timing requirements

Note : VCC = 5.0 V - 10 %, Ta = - 40 to 85 C unless otherwise noted

(1) I/O port

Symbol	Parameter	Test conditions	Li	mits	Unit	Reference
						number
			min.	max.		Fig. 18.5.1
tsu(P-E)	Port input set-up time		100		ns	1
th(E-P)	Port input hold time		0		ns	2

(2) Serial I/O

internal clock selected in CSIO mode

Symbol	Parameter	Test conditions	Limits		Limits		Unit	Reference
						number		
			min.	max.		Fig. 18.5.2		
tsu(D-CLK)	RxD input set-up time		100		ns	4		
th(CLK-D)	RxD input hold time		50		ns	5		

External clock selected in CSIO node

Symbol	Parameter	Test	Limits		Unit	Reference
		conditions		1		number
			min.	max.		Fig. 18.5.2
tc(CLK)	CLK input cycle time		640		ns	7
tw(CLKH)	CLK input "H" pulse width		300		ns	8
tw(CLKL)	CLK input "L" pulse width		300		ns	9
tsu(D-CLK)	RxD input set-up time		100		ns	10
th(CLK-D)	RxD input hold time		50		ns	(1)

(3) SBI

(*) * *											
Symbol	Parameter	Test	Limits		Unit	Reference					
		conditions				number					
			min.	max.		Fig. 18.5.3					
tw(SBIL)	SBI input "L" pulse width		100		ns	13					

ELECTRICAL CHARACTERISTICS

18.5 AC characteristics

(4) TINi (i = 0 to 23)										
Symbol	Parameter	Test	Limits		Unit	Reference				
		conditions				number				
			min.	max.		Fig. 18.5.5				
tw(TINi)	TINi input pulse width		150		ns	14				

(5) Read and write timing (BCLK clock base)

Symbol	Parameter	Test	Limits		Unit	Reference
		conditions				number
			min.	max.		Fig. 18.5.6
tsu(D-BCLKH)	Data input set-up time before BCLK		26		ns	31
th(BCLKH-D)	Data input hold time after BCLK		0		ns	32

(6) WAIT timing

Symbol	Parameter	Test	Limits		Limits		Unit	Reference
		conditions				number		
			min.	max.		Fig. 18.5.6		
tsu(WAITL-BCLKH)	WAIT input set-up time before BCLK		26		ns	33		
th(BCLKH-WAITH)	WAIT input hold time after BCLK		0		ns	34		

(7) Bus arbitration timing

Symbol	Parameter	Test	Limits		Limits		Limits		Unit	Reference
		conditions				number				
			min.	max.		Fig. 18.5.7				
tsu(HREQL-BCLKH)	HREQ input set-up time before BCLK		27		ns	35				
th(BCLKH-HREQH)	HREQ input hold time after BCLK		0		ns	36				

(8) Read timing (Read pulse base)

Symbol	Parameter	Test	Limits		Unit	Reference
		conditions				number
			min.	max.		Fig. 18.5.8
tw(RDL)	Read "L" pulse width		A — 23		ns	(43)
			(see note)			
tsu(D-RDH)	Data input set-up time before read		24		ns	(44)
th(RDH-D)	Data input hold time after read		0		ns	(45)

Note: $A = \frac{3}{2}$ tc (BCLK)

ELECTRICAL CHARACTERISTICS

18.5 AC characteristics

(9) Write timing (Write pulse base)

Symbol	Parameter	Test	Limits		Unit	Reference
		Contaitionio	min.	max.		Fig. 18.5.9
tw(BLWL)	Write "L" pulse width		tc (BCLK) – 16		ns	(51)
tw(BHWL)						

(10) Read and write intervals

Symbol	Parameter	Test	Limits		Unit	Reference
		conditions				number
			min.	max.		Fig. 18.5.10
td(RDH-BLWL)	Write delay time after read		tc (BCLK)		ns	56
td(RDH-BHWL)			2 2			
td(BLWH-RDL)	Write delay time after write		tc (BCLK)		ns	57
td(BHWH-RDL)			12			

18.5 AC characteristics

18.5.2 Switching characteristics

Note : VCC = 5.0 V - 10 %, Ta = - 40 to 85 C unless otherwise noted

(1) I/O port

Symbol	Parameter	Test	Limits		Unit	Reference
		conditions				number
			min.	max.		Fig. 18.5.1
td(E-P)	Port data output delay time			100	ns	3

(2) Serial I/O

Internal clock selected in CSIO mode

Symbol	Parameter	Test	Limits		Unit	Reference
		conditions				number
			min.	max.		Fig. 18.5.2
td(CLK-D)	TxD output delay time			200	ns	6

External clock selected in CSIO mode]

Symbol	Parameter	Test	Limits		Limits		Unit	Reference
		conditions				number		
			min.	max.		Fig. 18.5.2		
td(CLK-D)	TxD output delay time			200	ns	12		

(3) TOi (i = 0 to 20)

Symbol	Parameter	Test	Limits		Unit	Reference
		conditions				number
			min.	max.		Fig. 18.5.4
td(BCLK-TOi)	TOi output delay time			100	ns	15

ELECTRICAL CHARACTERISTICS

18.5 AC characteristics

(4) read and write timing	(based BCLK clock)
---------------------------	--------------------

Symbol	Parameter	Test	Limits		Unit	reference
		conditions				number
			min.		max.	Fig. 18.5.6
tc (BCLK)	BCLK output cycle time			tc (Xin)	ns	16
				2		
tw (BCLKH)	BCLK output "H" pulse width		A – 5		ns	17
			(see note 1)			
tw (BCLKL)	BCLK output "L" pulse width		A –15		ns	(18)
			(see note1)			
td (BCLKH-A)	Address delay time after BCLK			24	ns	19
td (BCLKH-CS)	Chip select delay time after BCLK			24	ns	20
tv (BCLKH-A)	Address effective time after BCLK		-11		ns	21
tv (BCLKH-CS)	Chip select effective time after BCLK		-11		ns	22
td (BCLKL-RDL)	Read delay time after BCLK			10	ns	23
tv (BCLKH-RDH)	Read effective time after BCLK		-12		ns	24
td (BCLKL-BLWL)	Write delay time after BCLK			9	ns	25
td (BCLKL-BHWL)						
tv (BCLKL-BLWH)	Write effective time after BCLK		-12		ns	26
tv (BCLKL-BHWH)						
td (BCLKL-D)	Data output delay time after BCLK			(see note 2)	ns	27
tv (BCLKH-D)	Data output effective time after BCLK		-16		ns	28
tpzx (BCLKL-DZ)	Data output enable time after BCLK		-19		ns	29
tpxz (BCLKH-DZ)	Data output disable time after BCLK			- 9	ns	30

Note 1 : A = $\frac{\text{tc (BCLK)}}{2}$

2: At 18 ± 40 - A , limits = 18 At 18 < 40 - A , limits = 40 - A

(5) Bus arbitration timing

Symbol	Parameter	Test	Limits		Unit	Reference
		conditions				number
			min.	max.		Fig. 18.5.7
td(BCLKL-HACKL)	HACK delay time after BCLK			29	ns	37)
tv(BCLKL-HACKH)	HACK effective time after BCLK		-11		ns	38
18.5 AC characteristics

(6) Read timing (read pulse base)

Symbol	Parameter	Test	Limits		Unit	Reference
		conditions				number
			min.	max.		Fig. 18.5.8
td(A-RDL)	Address delay time before read		B – 20		ns	39
			(see note)			
td(CS-RDL)	Chip select delay time before read		B – 20		ns	40
			(see note)			
tv(RDH-A)	Address effective time after read		0		ns	(41)
tv(RDH-CS)	Chip select effective time after read		0		ns	42
tpzx(RDH-DZ)	Data output enable time after read		B – 9		ns	46
			(see note)			

Note: B = $\frac{\text{tc (BCLK)}}{2}$

(7) Write timing (write pulse base)

Symbol	Parameter	Test conditions	Limits		Unit	Reference number
			min.	max.		Fig. 18.5.9
td(A-BLWL)	Address delay time before write		tc (BCLK)		ns	(47)
td(A-BHWL)			2 - 20			
td(CS-BLWL)	Chip select delay time before write		tc (BCLK)		ns	(48)
td(CS-BHWL)			2			_
tv(BLWH-A)	Address effective time after write		tc (BCLK)		ns	(49)
tv(BHWH-A)			2 - 15			
tv(BLWH-CS)	Chip select effective time after write		<u>tc (BCLK)</u> _ 15		ns	50
tv(BHWH-CS)			2			
td(BLWL-D)	Data output delay time after write			(see note)	ns	52
td(BHWL-D)						
tv(BLWH-D)	Data output effective time after write		tc (BCLK)		ns	53
tv(BHWH-D)			2 - 20			
tpxz(BLWH-DZ)	Data output disable time after write			tc (BCLK)	ns	(54)
tpxz(BHWH-DZ)				2)
Note : At 15 ‡	$36 - \frac{\text{tc (BCLK)}}{2}$, limits = 15					
At 15 <	$36 - \frac{\text{tc (BCLK)}}{2}$, limits = 36	<u>tc (BCLK</u> 2	<u>)</u>			

(8) Read and write intervals

Symbol	Parameter	Test	Limits		Unit	Reference
		conditions				number
			min.	max.		Fig. 18.5.10
tw(RDH)	Read "H" pulse width		<u>tc (BCLK)</u> 2 - 3		ns	55

18.5 AC characteristics

18.5.3 AC characteristics

Fig. 18.5.1 I/O port timing

18.5 AC characteristics

Fig. 18.5.4 TOi timing

Fig. 18.5.5 TINi timing

18.5 AC characteristics

18.5 AC characteristics

Fig. 18.5.7 Bus arbitration timing

Fig. 18.5.8 Read timing (Read pulse base)

18.5 AC characteristics

Fig. 18.5.9 Write timing (Write pulse base)

Fig. 18.5.10 Read and write intervals

18.5 AC characteristics

MEMORANDUM

CHAPTER 19 Standard Charactristics

19.1 A-D conversion charactrictics

19.1 A-D conversion charactristics

19.1 A-D conversion charactristics

(1) Measurement condition

- Ta = 25 C
- Measure voltage (VCC) = 5.12 V
- Normal mode, duoble mode
- (2) The method of watching the graph

Fig. 19.1.1 The method of watching the graph

STANDARD CHARACTRISTICS

19.1 A-D conversion characteristics

(3) actual measurement value

Fig. 19.1.2 Actual measurement value of normal speed

Fig. 19.1.3 Actual measurement value of double speed

STANDARD CHARACTRISTICS

19.1 A-D conversion characteristics

MEMORANDUM

APPENDIX 1 MECHANICAL SPECIFICATION

A1.1 Package outline (Real chip)

A1.1 Package outline (Real chip)

A1.1 Package outline (Real chip)

APPENDIX 2 INSTRUCTION PROCESSING TIME

A2.1 Instruction processing time

A2.1 Instruction processing time

A2.1 Instruction processing time

Instruction processing times of the M32150F4TFP are usually represented by the number of instruction execution cycles at the E stage; however, they can be affected by the number of cycles at other stages depending on pipeline operations. If an instruction is executed succeeding to a branch instruction, the processing times required at the IF (instruction fetch), D (decode), and E (execution) stages should be taken into consideration.

The instruction processing times of the M32150F4TFP at the pipeline stages are shown in Appended Table 2.1.1.

Appended Table 2.1.1 Instruction processing times at pipeline stages

	Execution cycles at pipeline stage (see note 1)				
Instruction	IF	D	Е	MEM	WB
Load instructions	R	1	1	R	1
(LD, LDB, LDUB, LDH, LDUH, LOCK)					
Store instructions	R	1	1	W	(1) (see note 2)
(ST, STB, STH, UNLOCK)					
Multiply instructions (MUL)	R	1	3	-	1
Divide/Remainder instructions	R	1	37	-	1
(DIV, DIVU, REM, REMU)					
Other instructions	R	1	1	-	1
(including instructions for DSP function)					

Notes 1: R, W: See the next page for detail.

2: Store instructions that use the register indirect + register update addressing mode require one cycle at the WB stage (the other Store instructions do not).

Here is explained the number of cycles required to access memory at the IF and MEM stages. The values shown below are the minimum cycles each for memory access and may differ from cycles necessary for accessing memory or the bus in practice.

In the case of write access, for example, the CPU finishes the MEM stage by writing to the write buffer and then allows memory to be written. Thus, depend on the states of memory and the bus which the CPU requests memory access before and after, instruction processing times might be longer than their calculated value.

R (Read cycles)	(Cycles)
Instruction in instruction queue is fetched:	1
Internal resource (ROM, RAM, or SFRs) is read:	1
External memory is read (with a byte or a halfword):	3 (see note)
External memory is read (with a word):	5 (see note)
Instructions are fetched continuously from external memory:	4 (see note)
W (Write cycles)	(Cycles)
Internal resource (RAM or SFRs) is written:	1
External memory is written:	2 (see note)

Note:

These are the values when an external access has one wait cycle. If the M32150F4TFP accesses the external circuit, another one wait cycle is required at least.

MITSUBISHI 32-BIT SINGLE-CHIP MICROCOMPUTER M32150F4TFP User's Manual

Mar. 1998 : Revised edition

Copyright (C) 1998 MITSUBISHI ELECTRIC CORPORATION

Notice:

This book, or parts thereof, may not be reproduced in any form without permission of MITSUBISHI ELECTRIC CORPORATION.

Printed in Japan (C) 1998 MITSUBISHI ELECTRIC CORPORATION